Advertisements
Advertisements
प्रश्न
Prove that:
cos 10° cos 30° cos 50° cos 70° = \[\frac{3}{16}\]
उत्तर
\[LHS = \cos 10^\circ \cos 30^\circ \cos 50^\circ \cos 70^\circ\]
\[ = \frac{1}{2} \left[ 2\cos 10^\circ \cos 50^\circ \right] \cos 30^\circ \cos 70^\circ\]
\[ = \frac{1}{2} \left[ \cos \left( 10^\circ + 50^\circ\right) + \cos \left( 10^\circ - 50^\circ \right) \right] \cos 30^\circ \cos 70^\circ \left\{ \because 2\cos A \cos B = \cos\left( A + B \right) - \cos \left( A - B \right) \right\}\]
\[ = \frac{1}{2} \left[ \cos 60^\circ + \cos \left( - 40^\circ \right) \right] \cos 30^\circ \cos 70^\circ\]
\[ = \frac{1}{2} \left[ \frac{1}{2} + \cos 40^\circ \right]\left( \frac{\sqrt{3}}{2} \right) \times \cos 70^\circ\]
\[= \frac{\sqrt{3}}{4}\cos 70^\circ\left[ \frac{1}{2} + \cos 40^\circ \right]\]
\[ = \frac{\sqrt{3}}{8}\cos 70^\circ + \frac{\sqrt{3}}{4}\left[ \cos 70^\circ \cos 40^\circ \right]\]
\[ = \frac{\sqrt{3}}{8}\cos 70^\circ + \frac{\sqrt{3}}{8}\left[ 2\cos 70^\circ \cos 40^\circ \right]\]
\[ = \frac{\sqrt{3}}{8}\cos 70^\circ + \frac{\sqrt{3}}{8}\left[ \cos \left( 70^\circ + 40^\circ \right) + \cos \left( 70^\circ - 40^\circ \right) \right]\]
\[ = \frac{\sqrt{3}}{8}\cos 70^\circ + \frac{\sqrt{3}}{8}\left[ \cos 110^\circ + \cos 30^\circ \right]\]
\[ = \frac{\sqrt{3}}{8}\cos 70^\circ + \frac{\sqrt{3}}{8}\left[ \cos \left( 180^\circ - 70^\circ \right) + \frac{\sqrt{3}}{2} \right]\]
\[ = \frac{\sqrt{3}}{2}\cos 70^\circ - \frac{\sqrt{3}}{8}\cos 70^\circ + \frac{3}{16} \left[ \because \cos \left( 180^\circ - 70^\circ \right) = - \cos 70^\circ \right]\]
\[ = \frac{3}{16} = RHS\]
APPEARS IN
संबंधित प्रश्न
Prove that:
Prove that:
Prove that:
cos 40° cos 80° cos 160° = \[- \frac{1}{8}\]
Prove that:
sin 20° sin 40° sin 80° = \[\frac{\sqrt{3}}{8}\]
Prove that:
tan 20° tan 40° tan 60° tan 80° = 3
Express each of the following as the product of sines and cosines:
cos 12x + cos 8x
Express each of the following as the product of sines and cosines:
cos 12x - cos 4x
Express each of the following as the product of sines and cosines:
sin 2x + cos 4x
Prove that:
sin 38° + sin 22° = sin 82°
Prove that:
sin 23° + sin 37° = cos 7°
Prove that:
sin 105° + cos 105° = cos 45°
Prove that:
cos 20° + cos 100° + cos 140° = 0
Prove that:
Prove that:
Prove that:
sin 47° + cos 77° = cos 17°
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
If cosec A + sec A = cosec B + sec B, prove that tan A tan B = \[\cot\frac{A + B}{2}\].
If \[x \cos\theta = y \cos\left( \theta + \frac{2\pi}{3} \right) = z \cos\left( \theta + \frac{4\pi}{3} \right)\], prove that \[xy + yz + zx = 0\]
If \[m \sin\theta = n \sin\left( \theta + 2\alpha \right)\], prove that \[\tan\left( \theta + \alpha \right) \cot\alpha = \frac{m + n}{m - n}\]
If sin A + sin B = α and cos A + cos B = β, then write the value of tan \[\left( \frac{A + B}{2} \right)\].
If cos (A + B) sin (C − D) = cos (A − B) sin (C + D), then write the value of tan A tan B tan C.
cos 40° + cos 80° + cos 160° + cos 240° =
sin 163° cos 347° + sin 73° sin 167° =
The value of cos 52° + cos 68° + cos 172° is
cos 35° + cos 85° + cos 155° =
sin 47° + sin 61° − sin 11° − sin 25° is equal to
If A, B, C are in A.P., then \[\frac{\sin A - \sin C}{\cos C - \cos A}\]=
Prove that:
tan 20° tan 40° tan 80° = `sqrt3`.
If cos A + cos B = `1/2` and sin A + sin B = `1/4`, prove that tan `(("A + B")/2) = 1/2`
If tan θ = `1/sqrt5` and θ lies in the first quadrant then cos θ is:
If secx cos5x + 1 = 0, where 0 < x ≤ `pi/2`, then find the value of x.