मराठी

Prove That:Cos 10° Cos 30° Cos 50° Cos 70° = \[\Frac{3}{16}\] - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that:
cos 10° cos 30° cos 50° cos 70° = \[\frac{3}{16}\]

 

बेरीज

उत्तर

\[LHS = \cos 10^\circ \cos 30^\circ \cos 50^\circ \cos 70^\circ\]
\[ = \frac{1}{2} \left[ 2\cos 10^\circ \cos 50^\circ \right] \cos 30^\circ \cos 70^\circ\]
\[ = \frac{1}{2} \left[ \cos \left( 10^\circ + 50^\circ\right) + \cos \left( 10^\circ - 50^\circ \right) \right] \cos 30^\circ \cos 70^\circ \left\{ \because 2\cos A \cos B = \cos\left( A + B \right) - \cos \left( A - B \right) \right\}\]
\[ = \frac{1}{2} \left[ \cos 60^\circ + \cos \left( - 40^\circ \right) \right] \cos 30^\circ \cos 70^\circ\]
\[ = \frac{1}{2} \left[ \frac{1}{2} + \cos 40^\circ \right]\left( \frac{\sqrt{3}}{2} \right) \times \cos 70^\circ\]
\[= \frac{\sqrt{3}}{4}\cos 70^\circ\left[ \frac{1}{2} + \cos 40^\circ \right]\]
\[ = \frac{\sqrt{3}}{8}\cos 70^\circ + \frac{\sqrt{3}}{4}\left[ \cos 70^\circ \cos 40^\circ \right]\]
\[ = \frac{\sqrt{3}}{8}\cos 70^\circ + \frac{\sqrt{3}}{8}\left[ 2\cos 70^\circ \cos 40^\circ \right]\]
\[ = \frac{\sqrt{3}}{8}\cos 70^\circ + \frac{\sqrt{3}}{8}\left[ \cos \left( 70^\circ + 40^\circ \right) + \cos \left( 70^\circ - 40^\circ \right) \right]\]
\[ = \frac{\sqrt{3}}{8}\cos 70^\circ + \frac{\sqrt{3}}{8}\left[ \cos 110^\circ + \cos 30^\circ \right]\]
\[ = \frac{\sqrt{3}}{8}\cos 70^\circ + \frac{\sqrt{3}}{8}\left[ \cos \left( 180^\circ - 70^\circ \right) + \frac{\sqrt{3}}{2} \right]\]
\[ = \frac{\sqrt{3}}{2}\cos 70^\circ - \frac{\sqrt{3}}{8}\cos 70^\circ + \frac{3}{16} \left[ \because \cos \left( 180^\circ - 70^\circ \right) = - \cos 70^\circ \right]\]
\[ = \frac{3}{16} = RHS\]

shaalaa.com
Transformation Formulae
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Transformation formulae - Exercise 8.1 [पृष्ठ ७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 8 Transformation formulae
Exercise 8.1 | Q 5.1 | पृष्ठ ७

संबंधित प्रश्‍न

Prove that:

\[2\sin\frac{5\pi}{12}\sin\frac{\pi}{12} = \frac{1}{2}\]

 


Prove that: 

\[2\sin\frac{5\pi}{12}\cos\frac{\pi}{12} = \frac{\sqrt{3} + 2}{2}\]

\[\text{ Prove that }4 \cos x \cos\left( \frac{\pi}{3} + x \right) \cos \left( \frac{\pi}{3} - x \right) = \cos 3x .\]

 


Prove that:
cos 40° cos 80° cos 160° = \[- \frac{1}{8}\]

 


Prove that:
 sin 20° sin 40° sin 80° = \[\frac{\sqrt{3}}{8}\]

 


Prove that:
tan 20° tan 40° tan 60° tan 80° = 3

 


Express each of the following as the product of sines and cosines:
 cos 12x + cos 8x


Express each of the following as the product of sines and cosines:
 cos 12x - cos 4x


Express each of the following as the product of sines and cosines:
sin 2x + cos 4x


Prove that:
sin 38° + sin 22° = sin 82°


Prove that:
 sin 23° + sin 37° = cos 7°


Prove that:
sin 105° + cos 105° = cos 45°


Prove that:
cos 20° + cos 100° + cos 140° = 0


Prove that:

\[\cos\frac{\pi}{12} - \sin\frac{\pi}{12} = \frac{1}{\sqrt{2}}\]

 


Prove that:

sin 80° − cos 70° = cos 50°

Prove that:
sin 47° + cos 77° = cos 17°


Prove that:
\[\sin\frac{x}{2}\sin\frac{7x}{2} + \sin\frac{3x}{2}\sin\frac{11x}{2} = \sin 2x \sin 5x .\]

 


Prove that:

\[\frac{\sin A + \sin 3A}{\cos A - \cos 3A} = \cot A\]

 


Prove that:

\[\frac{\sin 9A - \sin 7A}{\cos 7A - \cos 9A} = \cot 8A\]

Prove that:

\[\frac{\cos A + \cos B}{\cos B - \cos A} = \cot \left( \frac{A + B}{2} \right) \cot \left( \frac{A - B}{2} \right)\]

Prove that:

\[\frac{\sin 3A \cos 4A - \sin A \cos 2A}{\sin 4A \sin A + \cos 6A \cos A} = \tan 2A\]

Prove that:

\[\frac{\sin A \sin 2A + \sin 3A \sin 6A}{\sin A \cos 2A + \sin 3A \cos 6A} = \tan 5A\]

Prove that:

\[\frac{\sin A + 2 \sin 3A + \sin 5A}{\sin 3A + 2 \sin 5A + \sin 7A} = \frac{\sin 3A}{\sin 5A}\]

\[\text{ If } \cos A + \cos B = \frac{1}{2}\text{ and }\sin A + \sin B = \frac{1}{4},\text{ prove that }\tan\left( \frac{A + B}{2} \right) = \frac{1}{2} .\]

 


If cosec A + sec A = cosec B + sec B, prove that tan A tan B = \[\cot\frac{A + B}{2}\].


If \[x \cos\theta = y \cos\left( \theta + \frac{2\pi}{3} \right) = z \cos\left( \theta + \frac{4\pi}{3} \right)\], prove that \[xy + yz + zx = 0\]

 

 


If \[m \sin\theta = n \sin\left( \theta + 2\alpha \right)\], prove that \[\tan\left( \theta + \alpha \right) \cot\alpha = \frac{m + n}{m - n}\]


If sin A + sin B = α and cos A + cos B = β, then write the value of tan \[\left( \frac{A + B}{2} \right)\].

 

If cos (A + B) sin (C − D) = cos (A − B) sin (C + D), then write the value of tan A tan B tan C.


cos 40° + cos 80° + cos 160° + cos 240° =


sin 163° cos 347° + sin 73° sin 167° =


The value of cos 52° + cos 68° + cos 172° is


cos 35° + cos 85° + cos 155° =


sin 47° + sin 61° − sin 11° − sin 25° is equal to


If A, B, C are in A.P., then \[\frac{\sin A - \sin C}{\cos C - \cos A}\]=

 

Prove that:

tan 20° tan 40° tan 80° = `sqrt3`.


If cos A + cos B = `1/2` and sin A + sin B = `1/4`, prove that tan `(("A + B")/2) = 1/2`


If tan θ = `1/sqrt5` and θ lies in the first quadrant then cos θ is:


If secx cos5x + 1 = 0, where 0 < x ≤ `pi/2`, then find the value of x.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×