हिंदी

Prove That:Cos 10° Cos 30° Cos 50° Cos 70° = \[\Frac{3}{16}\] - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that:
cos 10° cos 30° cos 50° cos 70° = \[\frac{3}{16}\]

 

योग

उत्तर

\[LHS = \cos 10^\circ \cos 30^\circ \cos 50^\circ \cos 70^\circ\]
\[ = \frac{1}{2} \left[ 2\cos 10^\circ \cos 50^\circ \right] \cos 30^\circ \cos 70^\circ\]
\[ = \frac{1}{2} \left[ \cos \left( 10^\circ + 50^\circ\right) + \cos \left( 10^\circ - 50^\circ \right) \right] \cos 30^\circ \cos 70^\circ \left\{ \because 2\cos A \cos B = \cos\left( A + B \right) - \cos \left( A - B \right) \right\}\]
\[ = \frac{1}{2} \left[ \cos 60^\circ + \cos \left( - 40^\circ \right) \right] \cos 30^\circ \cos 70^\circ\]
\[ = \frac{1}{2} \left[ \frac{1}{2} + \cos 40^\circ \right]\left( \frac{\sqrt{3}}{2} \right) \times \cos 70^\circ\]
\[= \frac{\sqrt{3}}{4}\cos 70^\circ\left[ \frac{1}{2} + \cos 40^\circ \right]\]
\[ = \frac{\sqrt{3}}{8}\cos 70^\circ + \frac{\sqrt{3}}{4}\left[ \cos 70^\circ \cos 40^\circ \right]\]
\[ = \frac{\sqrt{3}}{8}\cos 70^\circ + \frac{\sqrt{3}}{8}\left[ 2\cos 70^\circ \cos 40^\circ \right]\]
\[ = \frac{\sqrt{3}}{8}\cos 70^\circ + \frac{\sqrt{3}}{8}\left[ \cos \left( 70^\circ + 40^\circ \right) + \cos \left( 70^\circ - 40^\circ \right) \right]\]
\[ = \frac{\sqrt{3}}{8}\cos 70^\circ + \frac{\sqrt{3}}{8}\left[ \cos 110^\circ + \cos 30^\circ \right]\]
\[ = \frac{\sqrt{3}}{8}\cos 70^\circ + \frac{\sqrt{3}}{8}\left[ \cos \left( 180^\circ - 70^\circ \right) + \frac{\sqrt{3}}{2} \right]\]
\[ = \frac{\sqrt{3}}{2}\cos 70^\circ - \frac{\sqrt{3}}{8}\cos 70^\circ + \frac{3}{16} \left[ \because \cos \left( 180^\circ - 70^\circ \right) = - \cos 70^\circ \right]\]
\[ = \frac{3}{16} = RHS\]

shaalaa.com
Transformation Formulae
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Transformation formulae - Exercise 8.1 [पृष्ठ ७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 8 Transformation formulae
Exercise 8.1 | Q 5.1 | पृष्ठ ७

संबंधित प्रश्न

Prove that:

\[2\sin\frac{5\pi}{12}\sin\frac{\pi}{12} = \frac{1}{2}\]

 


Prove that:

\[2\cos\frac{5\pi}{12}\cos\frac{\pi}{12} = \frac{1}{2}\]

Show that :

\[\sin 50^\circ \cos 85^\circ = \frac{1 - \sqrt{2} \sin 35^\circ}{2\sqrt{2}}\]

\[\text{ Prove that }4 \cos x \cos\left( \frac{\pi}{3} + x \right) \cos \left( \frac{\pi}{3} - x \right) = \cos 3x .\]

 


Prove that:
cos 40° cos 80° cos 160° = \[- \frac{1}{8}\]

 


Prove that:
tan 20° tan 40° tan 60° tan 80° = 3

 


Prove that:
 sin 20° sin 40° sin 60° sin 80° = \[\frac{3}{16}\]

 


Show that:
sin A sin (B − C) + sin B sin (C − A) + sin C sin (A − B) = 0


If α + β = \[\frac{\pi}{2}\], show that the maximum value of cos α cos β is \[\frac{1}{2}\].

 

 


Express each of the following as the product of sines and cosines:
sin 12x + sin 4x


Express each of the following as the product of sines and cosines:
sin 5x − sin x


Prove that:
 cos 100° + cos 20° = cos 40°


Prove that:
 cos 55° + cos 65° + cos 175° = 0


Prove that:
 cos 80° + cos 40° − cos 20° = 0


Prove that:

\[\cos\left( \frac{3\pi}{4} + x \right) - \cos\left( \frac{3\pi}{4} - x \right) = - \sqrt{2} \sin x\]

 


Prove that:
cos 3A + cos 5A + cos 7A + cos 15A = 4 cos 4A cos 5A cos 6A


Prove that:
 `sin A + sin 2A + sin 4A + sin 5A = 4 cos (A/2) cos((3A)/2)sin3A`


Prove that:
\[\sin\frac{x}{2}\sin\frac{7x}{2} + \sin\frac{3x}{2}\sin\frac{11x}{2} = \sin 2x \sin 5x .\]

 


Prove that:

\[\frac{\sin 9A - \sin 7A}{\cos 7A - \cos 9A} = \cot 8A\]

Prove that:

\[\frac{\cos A + \cos B}{\cos B - \cos A} = \cot \left( \frac{A + B}{2} \right) \cot \left( \frac{A - B}{2} \right)\]

Prove that:

\[\sin \alpha + \sin \beta + \sin \gamma - \sin (\alpha + \beta + \gamma) = 4 \sin \left( \frac{\alpha + \beta}{2} \right) \sin \left( \frac{\beta + \gamma}{2} \right) \sin \left( \frac{\gamma + \alpha}{2} \right)\]

 


If cosec A + sec A = cosec B + sec B, prove that tan A tan B = \[\cot\frac{A + B}{2}\].


Prove that:

\[\frac{\cos (A + B + C) + \cos ( - A + B + C) + \cos (A - B + C) + \cos (A + B - C)}{\sin (A + B + C) + \sin ( - A + B + C) + \sin (A - B + C) - \sin (A + B - C)} = \cot C\]

If \[m \sin\theta = n \sin\left( \theta + 2\alpha \right)\], prove that \[\tan\left( \theta + \alpha \right) \cot\alpha = \frac{m + n}{m - n}\]


If sin A + sin B = α and cos A + cos B = β, then write the value of tan \[\left( \frac{A + B}{2} \right)\].

 

If cos A = m cos B, then write the value of \[\cot\frac{A + B}{2} \cot\frac{A - B}{2}\].

 

Write the value of the expression \[\frac{1 - 4 \sin 10^\circ \sin 70^\circ}{2 \sin 10^\circ}\]


Write the value of \[\frac{\sin A + \sin 3A}{\cos A + \cos 3A}\]


cos 40° + cos 80° + cos 160° + cos 240° =


If sin 2 θ + sin 2 ϕ = \[\frac{1}{2}\] and cos 2 θ + cos 2 ϕ = \[\frac{3}{2}\], then cos2 (θ − ϕ) =

 

 


The value of sin 78° − sin 66° − sin 42° + sin 60° is ______.


If cos A = m cos B, then \[\cot\frac{A + B}{2} \cot\frac{B - A}{2}\]=

 

If A, B, C are in A.P., then \[\frac{\sin A - \sin C}{\cos C - \cos A}\]=

 

If \[\tan\alpha = \frac{x}{x + 1}\] and 

\[\tan\beta = \frac{1}{2x + 1}\], then
\[\tan\beta = \frac{1}{2x + 1}\] is equal to

 


Express the following as the sum or difference of sine or cosine:

`cos  (7"A")/3 sin  (5"A")/3`


Express the following as the sum or difference of sine or cosine:

cos 7θ sin 3θ


Express the following as the product of sine and cosine.

cos 2θ – cos θ


Prove that:

tan 20° tan 40° tan 80° = `sqrt3`.


If cosec A + sec A = cosec B + sec B prove that cot`(("A + B"))/2` = tan A tan B.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×