Advertisements
Advertisements
प्रश्न
If α + β = \[\frac{\pi}{2}\], show that the maximum value of cos α cos β is \[\frac{1}{2}\].
उत्तर
\[\text{ Let }x = \cos \alpha \cos \beta\]
\[ \Rightarrow x = \frac{1}{2}\left[ 2\cos \alpha \cos \beta \right]\]
\[ \Rightarrow x = \frac{1}{2}\left[ \cos \left( \alpha + \beta \right) + \cos \left( \alpha - \beta \right) \right]\]
\[ \Rightarrow x = \frac{1}{2}\left[ \cos \left( \alpha - \beta \right) + \cos 90^\circ \right]\]
\[ \Rightarrow x = \frac{1}{2}\cos \left( \alpha - \beta \right)\]
Now,
\[ - 1 \leq \cos \left( \alpha - \beta \right) \leq 1\]
\[ \Rightarrow - \frac{1}{2} \leq \frac{1}{2}\cos\left( \alpha - \beta \right) \leq \frac{1}{2}\]
\[ \Rightarrow - \frac{1}{2} \leq x \leq \frac{1}{2}\]
\[ \Rightarrow - \frac{1}{2} \leq \cos \alpha \cos \beta \leq \frac{1}{2}\]
\[\text{Hence}, \frac{1}{2}\text{ is the maximum value of }\cos \alpha \cos \beta .\]
APPEARS IN
संबंधित प्रश्न
Prove that:
Prove that:
Show that :
Show that :
Prove that:
cos 40° cos 80° cos 160° = \[- \frac{1}{8}\]
Prove that:
sin 20° sin 40° sin 80° = \[\frac{\sqrt{3}}{8}\]
Prove that:
cos 20° cos 40° cos 80° = \[\frac{1}{8}\]
Prove that tan 20° tan 30° tan 40° tan 80° = 1.
Show that:
sin A sin (B − C) + sin B sin (C − A) + sin C sin (A − B) = 0
Express each of the following as the product of sines and cosines:
sin 5x − sin x
Express each of the following as the product of sines and cosines:
cos 12x + cos 8x
Prove that:
sin 38° + sin 22° = sin 82°
Prove that:
cos 100° + cos 20° = cos 40°
Prove that:
sin 40° + sin 20° = cos 10°
Prove that:
sin 50° − sin 70° + sin 10° = 0
Prove that:
Prove that:
sin 47° + cos 77° = cos 17°
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
cos (A + B + C) + cos (A − B + C) + cos (A + B − C) + cos (− A + B + C) = 4 cos A cos Bcos C
If cos (A + B) sin (C − D) = cos (A − B) sin (C + D), prove that tan A tan B tan C + tan D = 0.
Write the value of \[\sin\frac{\pi}{15}\sin\frac{4\pi}{15}\sin\frac{3\pi}{10}\]
Write the value of \[\frac{\sin A + \sin 3A}{\cos A + \cos 3A}\]
cos 40° + cos 80° + cos 160° + cos 240° =
sin 163° cos 347° + sin 73° sin 167° =
cos 35° + cos 85° + cos 155° =
If \[\tan\alpha = \frac{x}{x + 1}\] and
Express the following as the sum or difference of sine or cosine:
`cos (7"A")/3 sin (5"A")/3`
Find the value of tan22°30′. `["Hint:" "Let" θ = 45°, "use" tan theta/2 = (sin theta/2)/(cos theta/2) = (2sin theta/2 cos theta/2)/(2cos^2 theta/2) = sintheta/(1 + costheta)]`