Advertisements
Advertisements
प्रश्न
If cos (A + B) sin (C − D) = cos (A − B) sin (C + D), prove that tan A tan B tan C + tan D = 0.
उत्तर
cos (A + B) sin (C − D) = cos (A − B) sin (C + D)
\[\Rightarrow\][cosA cosB − sinA sinB] [sinC cosD − cosC sinD] = [cosA cosB + sinA sinB] [sinC cosD + cosC sinD]
\[\text{ Dividing both sides by }\cos A \cos B \cos C \cos D, \]
\[\frac{\left[ \cos A \cos B - \sin A \sin B \right]\left[ \sin C \cos D - \cos C \sin D \right]}{\cos A \cos B \cos C \cos D} = \frac{\left[ \cos A \cos B + \sin A \sin B \right]\left[ \sin C \cos D + \cos C \sin D \right]}{\cos A \cos B \cos C \cos D}\]
\[ \Rightarrow \frac{\left[ \cos A \cos B - \sin A \sin B \right]}{\cos A \cos B} \times \frac{\left[ \sin C\cos D - \cos C \sin D \right]}{\cos C \cos D} = \frac{\left[ \cos A \cos B + \sin A \sin B \right]}{\cos A \cos B} \times \frac{\left[ \sin C \cos D + \cos C \sin D \right]}{\cos C \cos D}\]
\[ \Rightarrow \left[ 1 - \tan A \tan B \right]\left[ \tan C - \tan D \right] = \left[ 1 + \tan A \tan B \right]\left[ \tan C + \tan D \right]\]
\[ \Rightarrow \tan C - \tan D - \tan A \tan B \tan C + \tan A \tan B \tan D = \tan C + \tan D + \tan A \tan B \tan C + \tan A \tan B \tan D\]
\[ \Rightarrow - \tan D - \tan D = \tan A \tan B \tan C + \tan A \tan B \tan C\]
\[ \Rightarrow - 2\tan D = 2\tan A \tan B \tan C\]
\[ \Rightarrow \tan A \tan B \tan C = - \tan D\]
\[ \Rightarrow \tan A \tan B \tan C + \tan D = 0\]
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove that:
cos 10° cos 30° cos 50° cos 70° = \[\frac{3}{16}\]
Prove that:
cos 40° cos 80° cos 160° = \[- \frac{1}{8}\]
Prove that:
sin 20° sin 40° sin 60° sin 80° = \[\frac{3}{16}\]
Show that:
sin A sin (B − C) + sin B sin (C − A) + sin C sin (A − B) = 0
Prove that
\[\tan x \tan \left( \frac{\pi}{3} - x \right) \tan \left( \frac{\pi}{3} + x \right) = \tan 3x\]
Express each of the following as the product of sines and cosines:
cos 12x + cos 8x
Prove that:
sin 38° + sin 22° = sin 82°
Prove that:
cos 20° + cos 100° + cos 140° = 0
Prove that:
Prove that:
Prove that:
cos 3A + cos 5A + cos 7A + cos 15A = 4 cos 4A cos 5A cos 6A
Prove that:
cos A + cos 3A + cos 5A + cos 7A = 4 cos A cos 2A cos 4A
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
If cos (α + β) sin (γ + δ) = cos (α − β) sin (γ − δ), prove that cot α cot β cot γ = cot δ
If y sin ϕ = x sin (2θ + ϕ), prove that (x + y) cot (θ + ϕ) = (y − x) cot θ.
If \[x \cos\theta = y \cos\left( \theta + \frac{2\pi}{3} \right) = z \cos\left( \theta + \frac{4\pi}{3} \right)\], prove that \[xy + yz + zx = 0\]
Write the value of \[\sin\frac{\pi}{15}\sin\frac{4\pi}{15}\sin\frac{3\pi}{10}\]
If sin 2 θ + sin 2 ϕ = \[\frac{1}{2}\] and cos 2 θ + cos 2 ϕ = \[\frac{3}{2}\], then cos2 (θ − ϕ) =
The value of cos 52° + cos 68° + cos 172° is
If sin α + sin β = a and cos α − cos β = b, then tan \[\frac{\alpha - \beta}{2}\]=
If sin (B + C − A), sin (C + A − B), sin (A + B − C) are in A.P., then cot A, cot B and cot Care in
If sin x + sin y = \[\sqrt{3}\] (cos y − cos x), then sin 3x + sin 3y =
If \[\tan\alpha = \frac{x}{x + 1}\] and
Express the following as the sum or difference of sine or cosine:
`sin "A"/8 sin (3"A")/8`
Express the following as the product of sine and cosine.
sin A + sin 2A
Express the following as the product of sine and cosine.
cos 2A + cos 4A
Prove that:
cos 20° cos 40° cos 80° = `1/8`
If secx cos5x + 1 = 0, where 0 < x ≤ `pi/2`, then find the value of x.