हिंदी

If Cos (A + B) Sin (C − D) = Cos (A − B) Sin (C + D), Prove that Tan a Tan B Tan C + Tan D = 0. - Mathematics

Advertisements
Advertisements

प्रश्न

If cos (A + B) sin (C − D) = cos (A − B) sin (C + D), prove that tan A tan B tan C + tan D = 0.

 
योग

उत्तर

cos (A + B) sin (C − D) = cos (A − B) sin (C + D)
\[\Rightarrow\][cosA cosB − sinA sinB] [sinC cosD − cosC sinD] = [cosA cosB + sinA sinB] [sinC cosD +  cosC sinD]
\[\text{ Dividing both sides by }\cos A \cos B \cos C \cos D, \]
\[\frac{\left[ \cos A \cos B - \sin A \sin B \right]\left[ \sin C \cos D - \cos C \sin D \right]}{\cos A \cos B \cos C \cos D} = \frac{\left[ \cos A \cos B + \sin A \sin B \right]\left[ \sin C \cos D + \cos C \sin D \right]}{\cos A \cos B \cos C \cos D}\]
\[ \Rightarrow \frac{\left[ \cos A \cos B - \sin A \sin B \right]}{\cos A \cos B} \times \frac{\left[ \sin C\cos D - \cos C \sin D \right]}{\cos C \cos D} = \frac{\left[ \cos A \cos B + \sin A \sin B \right]}{\cos A \cos B} \times \frac{\left[ \sin C \cos D + \cos C \sin D \right]}{\cos C \cos D}\]
\[ \Rightarrow \left[ 1 - \tan A \tan B \right]\left[ \tan C - \tan D \right] = \left[ 1 + \tan A \tan B \right]\left[ \tan C + \tan D \right]\]
\[ \Rightarrow \tan C - \tan D - \tan A \tan B \tan C + \tan A \tan B \tan D = \tan C + \tan D + \tan A \tan B \tan C + \tan A \tan B \tan D\]
\[ \Rightarrow - \tan D - \tan D = \tan A \tan B \tan C + \tan A \tan B \tan C\]
\[ \Rightarrow - 2\tan D = 2\tan A \tan B \tan C\]
\[ \Rightarrow \tan A \tan B \tan C = - \tan D\]
\[ \Rightarrow \tan A \tan B \tan C + \tan D  = 0\]
Hence proved.

shaalaa.com
Transformation Formulae
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Transformation formulae - Exercise 8.2 [पृष्ठ १९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 8 Transformation formulae
Exercise 8.2 | Q 17 | पृष्ठ १९

संबंधित प्रश्न

Prove that:
cos 10° cos 30° cos 50° cos 70° = \[\frac{3}{16}\]

 


Prove that:
cos 40° cos 80° cos 160° = \[- \frac{1}{8}\]

 


Prove that:
 sin 20° sin 40° sin 60° sin 80° = \[\frac{3}{16}\]

 


Show that:
sin A sin (B − C) + sin B sin (C − A) + sin C sin (A − B) = 0


Prove that 
\[\tan x \tan \left( \frac{\pi}{3} - x \right) \tan \left( \frac{\pi}{3} + x \right) = \tan 3x\]


Express each of the following as the product of sines and cosines:
 cos 12x + cos 8x


Prove that:
sin 38° + sin 22° = sin 82°


Prove that:
cos 20° + cos 100° + cos 140° = 0


Prove that:

\[\cos\left( \frac{\pi}{4} + x \right) + \cos\left( \frac{\pi}{4} - x \right) = \sqrt{2} \cos x\]

 


Prove that:

\[\sin 65^\circ + \cos 65^\circ = \sqrt{2} \cos 20^\circ\]

Prove that:
cos 3A + cos 5A + cos 7A + cos 15A = 4 cos 4A cos 5A cos 6A


Prove that: 
cos A + cos 3A + cos 5A + cos 7A = 4 cos A cos 2A cos 4A


Prove that:
\[\sin\frac{x}{2}\sin\frac{7x}{2} + \sin\frac{3x}{2}\sin\frac{11x}{2} = \sin 2x \sin 5x .\]

 


Prove that \[\cos x \cos \frac{x}{2} - \cos 3x \cos\frac{9x}{2} = \sin 7x \sin 8x\]

Prove that:

\[\frac{\sin A + \sin 3A + \sin 5A}{\cos A + \cos 3A + \cos 5A} = \tan 3A\]

 


Prove that:

\[\frac{\sin 3A + \sin 5A + \sin 7A + \sin 9A}{\cos 3A + \cos 5A + \cos 7A + \cos 9A} = \tan 6A\]

Prove that:

\[\frac{\sin 5A - \sin 7A + \sin 8A - \sin 4A}{\cos 4A + \cos 7A - \cos 5A - \cos 8A} = \cot 6A\]

Prove that:

\[\frac{\sin 11A \sin A + \sin 7A \sin 3A}{\cos 11A \sin A + \cos 7A \sin 3A} = \tan 8A\]

Prove that:

\[\frac{\sin 3A \cos 4A - \sin A \cos 2A}{\sin 4A \sin A + \cos 6A \cos A} = \tan 2A\]

\[\text{ If } \cos A + \cos B = \frac{1}{2}\text{ and }\sin A + \sin B = \frac{1}{4},\text{ prove that }\tan\left( \frac{A + B}{2} \right) = \frac{1}{2} .\]

 


\[\text{ If }\sin 2A = \lambda \sin 2B, \text{ prove that }\frac{\tan (A + B)}{\tan (A - B)} = \frac{\lambda + 1}{\lambda - 1}\]

 


If cos (α + β) sin (γ + δ) = cos (α − β) sin (γ − δ), prove that cot α cot β cot γ = cot δ

 

If y sin ϕ = x sin (2θ + ϕ), prove that (x + y) cot (θ + ϕ) = (y − x) cot θ.

 

If \[x \cos\theta = y \cos\left( \theta + \frac{2\pi}{3} \right) = z \cos\left( \theta + \frac{4\pi}{3} \right)\], prove that \[xy + yz + zx = 0\]

 

 


Write the value of \[\sin\frac{\pi}{15}\sin\frac{4\pi}{15}\sin\frac{3\pi}{10}\]


If sin 2 θ + sin 2 ϕ = \[\frac{1}{2}\] and cos 2 θ + cos 2 ϕ = \[\frac{3}{2}\], then cos2 (θ − ϕ) =

 

 


The value of cos 52° + cos 68° + cos 172° is


If sin α + sin β = a and cos α − cos β = b, then tan \[\frac{\alpha - \beta}{2}\]=


If sin (B + C − A), sin (C + A − B), sin (A + B − C) are in A.P., then cot A, cot B and cot Care in


If sin x + sin y = \[\sqrt{3}\] (cos y − cos x), then sin 3x + sin 3y =

 


If \[\tan\alpha = \frac{x}{x + 1}\] and 

\[\tan\beta = \frac{1}{2x + 1}\], then
\[\tan\beta = \frac{1}{2x + 1}\] is equal to

 


Express the following as the sum or difference of sine or cosine:

`sin  "A"/8  sin  (3"A")/8`


Express the following as the product of sine and cosine.

sin A + sin 2A


Express the following as the product of sine and cosine.

cos 2A + cos 4A


Prove that:

cos 20° cos 40° cos 80° = `1/8`


If secx cos5x + 1 = 0, where 0 < x ≤ `pi/2`, then find the value of x.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×