हिंदी

If Sin (B + C − A), Sin (C + a − B), Sin (A + B − C) Are in A.P., Then Cot A, Cot B and Cot C Are in - Mathematics

Advertisements
Advertisements

प्रश्न

If sin (B + C − A), sin (C + A − B), sin (A + B − C) are in A.P., then cot A, cot B and cot Care in

विकल्प

  • GP

  • HP

  • AP

  • None of these

MCQ
योग

उत्तर

HP
Given:
sin (B + C − A), sin (C + A − B) and sin (A + B − C) are in A.P.
\[\Rightarrow \sin\left( C + A - B \right) - \sin\left( B + C - A \right) = \sin\left( A + B - C \right) - \sin\left( C + A - B \right)\]
\[ \Rightarrow 2\sin\left( \frac{C + A - B - B - C + A}{2} \right) \cos\left( \frac{C + A - B + B + C - A}{2} \right) = 2\sin\left( \frac{A + B - C - C - A + B}{2} \right) \cos\left( \frac{A + B - C + C + A - B}{2} \right)\]
\[ \Rightarrow \sin\left( A - B \right) \cos C = \sin\left( B - C \right) \cos A\]
\[ \Rightarrow \sin A \cos B \cos C - \cos A \sin B \cos C = \sin B \cos C\cos A - \cos B \sin C \cos A\]
\[ \Rightarrow 2\sin B \cos A \cos C = \sin A \cos B \cos C + \cos A \cos B \sin C\] 
Dividing both sides by cosA cosB cosC:
\[2\tan B = \tan A + \tan C \]
\[ \Rightarrow \frac{2}{cotB} = \frac{1}{cotA} + \frac{1}{cotC}\]

Hence, cotA, cotB and cotC are in HP.

shaalaa.com
Transformation Formulae
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Transformation formulae - Exercise 8.4 [पृष्ठ २२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 8 Transformation formulae
Exercise 8.4 | Q 12 | पृष्ठ २२

संबंधित प्रश्न

Prove that: 

\[2\sin\frac{5\pi}{12}\cos\frac{\pi}{12} = \frac{\sqrt{3} + 2}{2}\]

Show that :

\[\sin 25^\circ \cos 115^\circ = \frac{1}{2}\left( \sin 140^\circ - 1 \right)\]

\[\text{ Prove that }4 \cos x \cos\left( \frac{\pi}{3} + x \right) \cos \left( \frac{\pi}{3} - x \right) = \cos 3x .\]

 


Prove that:
cos 40° cos 80° cos 160° = \[- \frac{1}{8}\]

 


Prove that:
sin 10° sin 50° sin 60° sin 70° = \[\frac{\sqrt{3}}{16}\]

 


Show that:
sin A sin (B − C) + sin B sin (C − A) + sin C sin (A − B) = 0


Show that:
sin (B − C) cos (A − D) + sin (C − A) cos (B − D) + sin (A − B) cos (C − D) = 0


Prove that 
\[\tan x \tan \left( \frac{\pi}{3} - x \right) \tan \left( \frac{\pi}{3} + x \right) = \tan 3x\]


If α + β = \[\frac{\pi}{2}\], show that the maximum value of cos α cos β is \[\frac{1}{2}\].

 

 


Prove that:
sin 50° + sin 10° = cos 20°


Prove that:
 sin 23° + sin 37° = cos 7°


Prove that:
sin 40° + sin 20° = cos 10°


Prove that:
 cos 55° + cos 65° + cos 175° = 0


Prove that:
cos 20° + cos 100° + cos 140° = 0


Prove that:
cos 3A + cos 5A + cos 7A + cos 15A = 4 cos 4A cos 5A cos 6A


Prove that: 
cos A + cos 3A + cos 5A + cos 7A = 4 cos A cos 2A cos 4A


Prove that:

\[\frac{\sin A + \sin 3A + \sin 5A}{\cos A + \cos 3A + \cos 5A} = \tan 3A\]

 


Prove that:

\[\frac{\sin 3A + \sin 5A + \sin 7A + \sin 9A}{\cos 3A + \cos 5A + \cos 7A + \cos 9A} = \tan 6A\]

Prove that:

\[\frac{\sin 5A \cos 2A - \sin 6A \cos A}{\sin A \sin 2A - \cos 2A \cos 3A} = \tan A\]

Prove that:

\[\frac{\sin 11A \sin A + \sin 7A \sin 3A}{\cos 11A \sin A + \cos 7A \sin 3A} = \tan 8A\]

Prove that:

\[\frac{\sin A + 2 \sin 3A + \sin 5A}{\sin 3A + 2 \sin 5A + \sin 7A} = \frac{\sin 3A}{\sin 5A}\]

Prove that:

\[\frac{\sin \left( \theta + \phi \right) - 2 \sin \theta + \sin \left( \theta - \phi \right)}{\cos \left( \theta + \phi \right) - 2 \cos \theta + \cos \left( \theta - \phi \right)} = \tan \theta\]

\[\text{ If } \cos A + \cos B = \frac{1}{2}\text{ and }\sin A + \sin B = \frac{1}{4},\text{ prove that }\tan\left( \frac{A + B}{2} \right) = \frac{1}{2} .\]

 


\[\text{ If }\sin 2A = \lambda \sin 2B, \text{ prove that }\frac{\tan (A + B)}{\tan (A - B)} = \frac{\lambda + 1}{\lambda - 1}\]

 


If y sin ϕ = x sin (2θ + ϕ), prove that (x + y) cot (θ + ϕ) = (y − x) cot θ.

 

If cos (A + B) sin (C − D) = cos (A − B) sin (C + D), prove that tan A tan B tan C + tan D = 0.

 

If \[x \cos\theta = y \cos\left( \theta + \frac{2\pi}{3} \right) = z \cos\left( \theta + \frac{4\pi}{3} \right)\], prove that \[xy + yz + zx = 0\]

 

 


If (cos α + cos β)2 + (sin α + sin β)2 = \[\lambda \cos^2 \left( \frac{\alpha - \beta}{2} \right)\], write the value of λ. 


sin 163° cos 347° + sin 73° sin 167° =


sin 47° + sin 61° − sin 11° − sin 25° is equal to


If cos A = m cos B, then \[\cot\frac{A + B}{2} \cot\frac{B - A}{2}\]=

 

If \[\tan\alpha = \frac{x}{x + 1}\] and 

\[\tan\beta = \frac{1}{2x + 1}\], then
\[\tan\beta = \frac{1}{2x + 1}\] is equal to

 


Express the following as the sum or difference of sine or cosine:

cos(60° + A) sin(120° + A)


Express the following as the product of sine and cosine.

cos 2A + cos 4A


Express the following as the product of sine and cosine.

cos 2θ – cos θ


Prove that:

(cos α – cos β)2 + (sin α – sin β)2 = 4 sin2 `((alpha - beta)/2)`


Prove that cos 20° cos 40° cos 60° cos 80° = `3/16`.


Find the value of tan22°30′. `["Hint:"  "Let" θ = 45°, "use" tan  theta/2 = (sin  theta/2)/(cos  theta/2) = (2sin  theta/2 cos  theta/2)/(2cos^2  theta/2) = sintheta/(1 + costheta)]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×