हिंदी

Prove That: Sin 3 a + Sin 5 a + Sin 7 a + Sin 9 a Cos 3 a + Cos 5 a + Cos 7 a + Cos 9 a = Tan 6 a - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that:

\[\frac{\sin 3A + \sin 5A + \sin 7A + \sin 9A}{\cos 3A + \cos 5A + \cos 7A + \cos 9A} = \tan 6A\]
योग

उत्तर

Consider LHS: 
\[ \frac{\sin 3A + \sin 5A + \sin 7A + \sin 9A}{\cos 3A + \cos 5A + \cos 7A + \cos 9A}\]
\[ = \frac{\sin 3A + \sin 9A + \sin 5A + \sin 7A}{\cos 3A + \cos 9A + \cos 5A + \sin 7A}\]
\[ = \frac{2\sin \left( \frac{3A + 9A}{2} \right) \cos \left( \frac{3A - 9A}{2} \right) + 2\sin \left( \frac{5A + 7A}{2} \right) \cos \left( \frac{5A - 7A}{2} \right)}{2\cos \left( \frac{3A + 9A}{2} \right) \cos \left( \frac{3A - 9A}{2} \right) + 2\cos \left( \frac{5A + 7A}{2} \right) \cos \left( \frac{5A - 7A}{2} \right)}\]
\[ = \frac{2\sin 6A \cos \left( - 3A \right) + 2\sin 6A \cos \left( - A \right)}{2\cos 6A \cos \left( - 3A \right) + 2\cos 6A \cos \left( - A \right)}\]
\[ = \frac{2\sin 6A \cos 3A + 2\sin 6A \cos A}{2\cos 6A \cos 3A + 2\cos 6A \cos A}\]
\[ = \frac{2\sin 6A\left[ \cos 3A + \cos A \right]}{2\cos 6A\left[ \cos 3A + \cos A \right]}\]
\[ = \tan 6A\]
 = RHS
Hence, LHS = RHS.

shaalaa.com
Transformation Formulae
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Transformation formulae - Exercise 8.2 [पृष्ठ १८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 8 Transformation formulae
Exercise 8.2 | Q 8.04 | पृष्ठ १८

संबंधित प्रश्न

Prove that: 

\[2\sin\frac{5\pi}{12}\cos\frac{\pi}{12} = \frac{\sqrt{3} + 2}{2}\]

\[\text{ Prove that }4 \cos x \cos\left( \frac{\pi}{3} + x \right) \cos \left( \frac{\pi}{3} - x \right) = \cos 3x .\]

 


Show that:
sin A sin (B − C) + sin B sin (C − A) + sin C sin (A − B) = 0


Express each of the following as the product of sines and cosines:
sin 12x + sin 4x


Express each of the following as the product of sines and cosines:
 cos 12x + cos 8x


Express each of the following as the product of sines and cosines:
 cos 12x - cos 4x


Prove that:
 cos 100° + cos 20° = cos 40°


Prove that:

sin 80° − cos 70° = cos 50°

Prove that:

sin 51° + cos 81° = cos 21°

Prove that:

\[\cos\left( \frac{\pi}{4} + x \right) + \cos\left( \frac{\pi}{4} - x \right) = \sqrt{2} \cos x\]

 


Prove that:
cos 3A + cos 5A + cos 7A + cos 15A = 4 cos 4A cos 5A cos 6A


Prove that:
\[\sin\frac{x}{2}\sin\frac{7x}{2} + \sin\frac{3x}{2}\sin\frac{11x}{2} = \sin 2x \sin 5x .\]

 


Prove that \[\cos x \cos \frac{x}{2} - \cos 3x \cos\frac{9x}{2} = \sin 7x \sin 8x\]

Prove that:

\[\frac{\sin 5A \cos 2A - \sin 6A \cos A}{\sin A \sin 2A - \cos 2A \cos 3A} = \tan A\]

Prove that:

\[\frac{\sin 11A \sin A + \sin 7A \sin 3A}{\cos 11A \sin A + \cos 7A \sin 3A} = \tan 8A\]

Prove that:

\[\frac{\sin A \sin 2A + \sin 3A \sin 6A}{\sin A \cos 2A + \sin 3A \cos 6A} = \tan 5A\]

Prove that:

\[\frac{\sin A + 2 \sin 3A + \sin 5A}{\sin 3A + 2 \sin 5A + \sin 7A} = \frac{\sin 3A}{\sin 5A}\]

Prove that:

\[\frac{\sin \left( \theta + \phi \right) - 2 \sin \theta + \sin \left( \theta - \phi \right)}{\cos \left( \theta + \phi \right) - 2 \cos \theta + \cos \left( \theta - \phi \right)} = \tan \theta\]

Prove that:
cos (A + B + C) + cos (A − B + C) + cos (A + B − C) + cos (− A + B + C) = 4 cos A cos Bcos C


Prove that:

\[\frac{\cos (A + B + C) + \cos ( - A + B + C) + \cos (A - B + C) + \cos (A + B - C)}{\sin (A + B + C) + \sin ( - A + B + C) + \sin (A - B + C) - \sin (A + B - C)} = \cot C\]

If sin A + sin B = α and cos A + cos B = β, then write the value of tan \[\left( \frac{A + B}{2} \right)\].

 

If sin 2A = λ sin 2B, then write the value of \[\frac{\lambda + 1}{\lambda - 1}\]


If cos (A + B) sin (C − D) = cos (A − B) sin (C + D), then write the value of tan A tan B tan C.


cos 40° + cos 80° + cos 160° + cos 240° =


If sin 2 θ + sin 2 ϕ = \[\frac{1}{2}\] and cos 2 θ + cos 2 ϕ = \[\frac{3}{2}\], then cos2 (θ − ϕ) =

 

 


The value of sin 50° − sin 70° + sin 10° is equal to


sin 47° + sin 61° − sin 11° − sin 25° is equal to


If A, B, C are in A.P., then \[\frac{\sin A - \sin C}{\cos C - \cos A}\]=

 

If sin (B + C − A), sin (C + A − B), sin (A + B − C) are in A.P., then cot A, cot B and cot Care in


Express the following as the sum or difference of sine or cosine:

`sin  "A"/8  sin  (3"A")/8`


Express the following as the sum or difference of sine or cosine:

`cos  (7"A")/3 sin  (5"A")/3`


Express the following as the product of sine and cosine.

cos 2θ – cos θ


Prove that:

sin A sin(60° + A) sin(60° – A) = `1/4` sin 3A


Evaluate:

sin 50° – sin 70° + sin 10°


If cos A + cos B = `1/2` and sin A + sin B = `1/4`, prove that tan `(("A + B")/2) = 1/2`


If cosec A + sec A = cosec B + sec B prove that cot`(("A + B"))/2` = tan A tan B.


Find the value of tan22°30′. `["Hint:"  "Let" θ = 45°, "use" tan  theta/2 = (sin  theta/2)/(cos  theta/2) = (2sin  theta/2 cos  theta/2)/(2cos^2  theta/2) = sintheta/(1 + costheta)]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×