Advertisements
Advertisements
प्रश्न
Express each of the following as the product of sines and cosines:
cos 12x - cos 4x
उत्तर
\[\cos 12x - \cos 4x\]
\[ = - 2\sin \left( \frac{12x + 4x}{2} \right) \sin \left( \frac{12x - 4x}{2} \right) \left\{ \because \cos A - \cos B = - 2\sin \left( \frac{A + B}{2} \right) \sin \left( \frac{A - B}{2} \right) \right\}\]
\[ = - 2 \sin 8x \sin 4x\]
APPEARS IN
संबंधित प्रश्न
Show that :
Prove that:
sin 20° sin 40° sin 80° = \[\frac{\sqrt{3}}{8}\]
Prove that:
sin 20° sin 40° sin 60° sin 80° = \[\frac{3}{16}\]
Express each of the following as the product of sines and cosines:
sin 2x + cos 4x
Prove that:
sin 38° + sin 22° = sin 82°
Prove that:
sin 40° + sin 20° = cos 10°
Prove that:
sin 50° − sin 70° + sin 10° = 0
Prove that:
cos 80° + cos 40° − cos 20° = 0
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
sin (B − C) cos (A − D) + sin (C − A) cos (B − D) + sin (A − B) cos (C − D) = 0
If cos A = m cos B, then write the value of \[\cot\frac{A + B}{2} \cot\frac{A - B}{2}\].
Write the value of the expression \[\frac{1 - 4 \sin 10^\circ \sin 70^\circ}{2 \sin 10^\circ}\]
If A + B = \[\frac{\pi}{3}\] and cos A + cos B = 1, then find the value of cos \[\frac{A - B}{2}\].
Write the value of \[\frac{\sin A + \sin 3A}{\cos A + \cos 3A}\]
If cos (A + B) sin (C − D) = cos (A − B) sin (C + D), then write the value of tan A tan B tan C.
The value of cos 52° + cos 68° + cos 172° is
The value of sin 50° − sin 70° + sin 10° is equal to
If cos A = m cos B, then \[\cot\frac{A + B}{2} \cot\frac{B - A}{2}\]=
If sin x + sin y = \[\sqrt{3}\] (cos y − cos x), then sin 3x + sin 3y =
Express the following as the sum or difference of sine or cosine:
`sin "A"/8 sin (3"A")/8`
Express the following as the product of sine and cosine.
cos 2θ – cos θ
Prove that:
cos 20° cos 40° cos 80° = `1/8`
Prove that:
`(cos 2"A" - cos 3"A")/(sin "2A" + sin "3A") = tan "A"/2`
If sin(y + z – x), sin(z + x – y), sin(x + y – z) are in A.P, then prove that tan x, tan y and tan z are in A.P.
If cosec A + sec A = cosec B + sec B prove that cot`(("A + B"))/2` = tan A tan B.
If tan θ = `1/sqrt5` and θ lies in the first quadrant then cos θ is:
If secx cos5x + 1 = 0, where 0 < x ≤ `pi/2`, then find the value of x.