हिंदी

Show that : Sin 25 ∘ Cos 115 ∘ = 1 2 ( Sin 140 ∘ − 1 ) - Mathematics

Advertisements
Advertisements

प्रश्न

Show that :

\[\sin 25^\circ \cos 115^\circ = \frac{1}{2}\left( \sin 140^\circ - 1 \right)\]
योग

उत्तर

\[LHS = 2\sin25^\circ \cos 115^\circ\]
\[ = \frac{\sin \left( 25^\circ + 115^\circ \right) + \sin \left( 25^\circ - 115^\circ \right)}{2} \left[ \because \sin A \cos B = \frac{1}{2}\left\{ \sin (A + B) + \sin (A - B) \right\} \right]\]
\[ = \frac{\sin 140^\circ + \sin \left( - 90^\circ \right)}{2}\]
\[ = \frac{\sin 140^\circ - \sin \left( 90^\circ \right)}{2}\]
\[ = \frac{\sin 140^\circ - 1}{2} \]
\[RHS = \frac{\sin 140^\circ - 1}{2}\]
Hence, LHS = RHS

shaalaa.com
Transformation Formulae
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Transformation formulae - Exercise 8.1 [पृष्ठ ६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 8 Transformation formulae
Exercise 8.1 | Q 3.2 | पृष्ठ ६

संबंधित प्रश्न

Prove that:

\[2\sin\frac{5\pi}{12}\sin\frac{\pi}{12} = \frac{1}{2}\]

 


Prove that:
tan 20° tan 40° tan 60° tan 80° = 3

 


Prove that tan 20° tan 30° tan 40° tan 80° = 1.


Prove that:
sin 10° sin 50° sin 60° sin 70° = \[\frac{\sqrt{3}}{16}\]

 


Prove that:
 sin 20° sin 40° sin 60° sin 80° = \[\frac{3}{16}\]

 


Express each of the following as the product of sines and cosines:
 cos 12x + cos 8x


Express each of the following as the product of sines and cosines:
 cos 12x - cos 4x


Express each of the following as the product of sines and cosines:
sin 2x + cos 4x


Prove that:
 cos 100° + cos 20° = cos 40°


Prove that:
sin 50° + sin 10° = cos 20°


Prove that:
sin 105° + cos 105° = cos 45°


Prove that:
\[\sin\frac{5\pi}{18} - \cos\frac{4\pi}{9} = \sqrt{3} \sin\frac{\pi}{9}\]


Prove that:

sin 80° − cos 70° = cos 50°

Prove that:
sin 47° + cos 77° = cos 17°


Prove that:
 `sin A + sin 2A + sin 4A + sin 5A = 4 cos (A/2) cos((3A)/2)sin3A`


Prove that:

\[\frac{\sin A + \sin 3A}{\cos A - \cos 3A} = \cot A\]

 


Prove that:

\[\frac{\sin 9A - \sin 7A}{\cos 7A - \cos 9A} = \cot 8A\]

Prove that:

\[\frac{\sin A - \sin B}{\cos A + \cos B} = \tan\frac{A - B}{2}\]

Prove that:

\[\frac{\sin 5A - \sin 7A + \sin 8A - \sin 4A}{\cos 4A + \cos 7A - \cos 5A - \cos 8A} = \cot 6A\]

Prove that:

\[\frac{\sin 5A \cos 2A - \sin 6A \cos A}{\sin A \sin 2A - \cos 2A \cos 3A} = \tan A\]

Prove that:

\[\frac{\sin A + 2 \sin 3A + \sin 5A}{\sin 3A + 2 \sin 5A + \sin 7A} = \frac{\sin 3A}{\sin 5A}\]

Prove that:
 sin (B − C) cos (A − D) + sin (C − A) cos (B − D) + sin (A − B) cos (C − D) = 0


Write the value of sin \[\frac{\pi}{12}\] sin \[\frac{5\pi}{12}\].


Write the value of \[\sin\frac{\pi}{15}\sin\frac{4\pi}{15}\sin\frac{3\pi}{10}\]


If sin 2A = λ sin 2B, then write the value of \[\frac{\lambda + 1}{\lambda - 1}\]


If sin 2 θ + sin 2 ϕ = \[\frac{1}{2}\] and cos 2 θ + cos 2 ϕ = \[\frac{3}{2}\], then cos2 (θ − ϕ) =

 

 


The value of sin 78° − sin 66° − sin 42° + sin 60° is ______.


sin 47° + sin 61° − sin 11° − sin 25° is equal to


If \[\tan\alpha = \frac{x}{x + 1}\] and 

\[\tan\beta = \frac{1}{2x + 1}\], then
\[\tan\beta = \frac{1}{2x + 1}\] is equal to

 


Express the following as the sum or difference of sine or cosine:

cos(60° + A) sin(120° + A)


Express the following as the sum or difference of sine or cosine:

`cos  (7"A")/3 sin  (5"A")/3`


Express the following as the product of sine and cosine.

cos 2θ – cos θ


Prove that:

cos 20° cos 40° cos 80° = `1/8`


Prove that:

sin A sin(60° + A) sin(60° – A) = `1/4` sin 3A


Prove that:

`(cos 7"A" +cos 5"A")/(sin 7"A" −sin 5"A")` = cot A


If sin(y + z – x), sin(z + x – y), sin(x + y – z) are in A.P, then prove that tan x, tan y and tan z are in A.P.


If cosec A + sec A = cosec B + sec B prove that cot`(("A + B"))/2` = tan A tan B.


If secx cos5x + 1 = 0, where 0 < x ≤ `pi/2`, then find the value of x.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×