Advertisements
Advertisements
प्रश्न
Prove that:
उत्तर
Consider LHS:
\[ \frac{\sin 5A - \sin 7A + \sin 8A - \sin 4A}{\cos 4A + \cos 7A - \cos 5A - \cos 8A}\]
\[ = \frac{\sin 5A - \sin 7A + \sin 8A - \sin 4A}{\cos 4A - \cos 8A + \cos 7A - \sin 5A}\]
\[ = \frac{2\sin \left( \frac{5A - 7A}{2} \right) \cos \left( \frac{5A + 7A}{2} \right) + 2\sin \left( \frac{8A - 4A}{2} \right) \cos \left( \frac{8A + 4A}{2} \right)}{- 2\sin \left( \frac{4A + 8A}{2} \right) \sin \left( \frac{4A - 8A}{2} \right) - 2\sin \left( \frac{7A + 5A}{2} \right) \sin \left( \frac{7A - 5A}{2} \right)}\]
\[ \]
\[ = \frac{2\sin \left( - A \right) \cos 6A + 2\sin 2A \cos 6A}{- 2\sin 6A \sin \left( - 2A \right) - 2\sin 6A \sin A}\]
\[ = \frac{- 2\sin A \cos 6A + 2\sin 2A cos 6A}{2\sin 6A \sin 2A - 2\sin 6A \sin A}\]
\[ = \frac{2\cos 6A\left[ \sin 2A - \sin A \right]}{2\sin 6A\left[ \sin 2A - \sin A \right]}\]
\[ = \cot 6A\]
= RHS
Hence, LHS = RHS.
APPEARS IN
संबंधित प्रश्न
Prove that:
Show that :
Prove that:
cos 10° cos 30° cos 50° cos 70° = \[\frac{3}{16}\]
Prove that:
cos 40° cos 80° cos 160° = \[- \frac{1}{8}\]
Prove that:
cos 20° cos 40° cos 80° = \[\frac{1}{8}\]
Prove that tan 20° tan 30° tan 40° tan 80° = 1.
Show that:
sin A sin (B − C) + sin B sin (C − A) + sin C sin (A − B) = 0
If α + β = \[\frac{\pi}{2}\], show that the maximum value of cos α cos β is \[\frac{1}{2}\].
Express each of the following as the product of sines and cosines:
sin 5x − sin x
Prove that:
sin 105° + cos 105° = cos 45°
Prove that:
sin 40° + sin 20° = cos 10°
Prove that:
\[\sin\frac{5\pi}{18} - \cos\frac{4\pi}{9} = \sqrt{3} \sin\frac{\pi}{9}\]
Prove that:
sin 3A + sin 2A − sin A = 4 sin A cos \[\frac{A}{2}\] \[\frac{3A}{2}\]
Prove that:
cos 20° cos 100° + cos 100° cos 140° − 140° cos 200° = −\[\frac{3}{4}\]
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
If cos (α + β) sin (γ + δ) = cos (α − β) sin (γ − δ), prove that cot α cot β cot γ = cot δ
If y sin ϕ = x sin (2θ + ϕ), prove that (x + y) cot (θ + ϕ) = (y − x) cot θ.
If (cos α + cos β)2 + (sin α + sin β)2 = \[\lambda \cos^2 \left( \frac{\alpha - \beta}{2} \right)\], write the value of λ.
If sin A + sin B = α and cos A + cos B = β, then write the value of tan \[\left( \frac{A + B}{2} \right)\].
If cos A = m cos B, then write the value of \[\cot\frac{A + B}{2} \cot\frac{A - B}{2}\].
cos 40° + cos 80° + cos 160° + cos 240° =
If sin (B + C − A), sin (C + A − B), sin (A + B − C) are in A.P., then cot A, cot B and cot Care in
If sin x + sin y = \[\sqrt{3}\] (cos y − cos x), then sin 3x + sin 3y =
If \[\tan\alpha = \frac{x}{x + 1}\] and
Express the following as the sum or difference of sine or cosine:
`sin "A"/8 sin (3"A")/8`
Express the following as the sum or difference of sine or cosine:
cos(60° + A) sin(120° + A)
Express the following as the product of sine and cosine.
sin A + sin 2A
Express the following as the product of sine and cosine.
cos 2A + cos 4A
Express the following as the product of sine and cosine.
sin 6θ – sin 2θ
Prove that:
cos 20° cos 40° cos 80° = `1/8`
If secx cos5x + 1 = 0, where 0 < x ≤ `pi/2`, then find the value of x.