Advertisements
Advertisements
प्रश्न
उत्तर
\[\text{ LHS }= \sin\frac{x}{2}\sin\frac{7x}{2} + \sin\frac{3x}{2}\sin\frac{11x}{2}\]
\[ = \frac{1}{2}\left[ 2\sin\frac{x}{2}\sin\frac{7x}{2} + 2\sin\frac{3x}{2}\sin\frac{11x}{2} \right]\]
\[ = \frac{1}{2}\left[ \cos\left( \frac{7x}{2} - \frac{x}{2} \right) - \cos\left( \frac{7x}{2} + \frac{x}{2} \right) + \cos\left( \frac{11x}{2} - \frac{3x}{2} \right) - \cos\left( \frac{11x}{2} + \frac{3x}{2} \right) \right]\]
\[ = \frac{1}{2}\left[ \cos3x - \cos4x + \cos4x - \cos7x \right]\]
\[ = \frac{1}{2}\left[ \cos3x - \cos7x \right]\]
\[ = \frac{1}{2}\left[ - 2\sin\left( \frac{3x + 7x}{2} \right)\sin\left( \frac{3x - 7x}{2} \right) \right]\]
\[ = \frac{1}{2}\left[ - 2\sin\left( 5x \right)\sin\left( - 2x \right) \right]\]
\[ = \sin\left( 5x \right)\sin\left( 2x \right) =\text{ RHS }\]
Hence, LHS = RHS
APPEARS IN
संबंधित प्रश्न
Show that :
Prove that:
cos 40° cos 80° cos 160° = \[- \frac{1}{8}\]
Prove that:
tan 20° tan 40° tan 60° tan 80° = 3
Show that:
sin (B − C) cos (A − D) + sin (C − A) cos (B − D) + sin (A − B) cos (C − D) = 0
Express each of the following as the product of sines and cosines:
sin 12x + sin 4x
Express each of the following as the product of sines and cosines:
cos 12x - cos 4x
Prove that:
sin 38° + sin 22° = sin 82°
Prove that:
sin 40° + sin 20° = cos 10°
Prove that:
sin 50° − sin 70° + sin 10° = 0
Prove that:
\[\sin\frac{5\pi}{18} - \cos\frac{4\pi}{9} = \sqrt{3} \sin\frac{\pi}{9}\]
Prove that:
Prove that:
cos 3A + cos 5A + cos 7A + cos 15A = 4 cos 4A cos 5A cos 6A
Prove that:
cos A + cos 3A + cos 5A + cos 7A = 4 cos A cos 2A cos 4A
Prove that:
sin 3A + sin 2A − sin A = 4 sin A cos \[\frac{A}{2}\] \[\frac{3A}{2}\]
Prove that:
Prove that:
Prove that:
Prove that:
If cosec A + sec A = cosec B + sec B, prove that tan A tan B = \[\cot\frac{A + B}{2}\].
If y sin ϕ = x sin (2θ + ϕ), prove that (x + y) cot (θ + ϕ) = (y − x) cot θ.
If \[x \cos\theta = y \cos\left( \theta + \frac{2\pi}{3} \right) = z \cos\left( \theta + \frac{4\pi}{3} \right)\], prove that \[xy + yz + zx = 0\]
If \[m \sin\theta = n \sin\left( \theta + 2\alpha \right)\], prove that \[\tan\left( \theta + \alpha \right) \cot\alpha = \frac{m + n}{m - n}\]
Write the value of \[\sin\frac{\pi}{15}\sin\frac{4\pi}{15}\sin\frac{3\pi}{10}\]
If cos (A + B) sin (C − D) = cos (A − B) sin (C + D), then write the value of tan A tan B tan C.
The value of cos 52° + cos 68° + cos 172° is
If cos A = m cos B, then \[\cot\frac{A + B}{2} \cot\frac{B - A}{2}\]=
If A, B, C are in A.P., then \[\frac{\sin A - \sin C}{\cos C - \cos A}\]=
Express the following as the sum or difference of sine or cosine:
`cos (7"A")/3 sin (5"A")/3`
Express the following as the product of sine and cosine.
sin A + sin 2A
If cos A + cos B = `1/2` and sin A + sin B = `1/4`, prove that tan `(("A + B")/2) = 1/2`
If sin(y + z – x), sin(z + x – y), sin(x + y – z) are in A.P, then prove that tan x, tan y and tan z are in A.P.
If tan θ = `1/sqrt5` and θ lies in the first quadrant then cos θ is: