Advertisements
Advertisements
प्रश्न
If \[x \cos\theta = y \cos\left( \theta + \frac{2\pi}{3} \right) = z \cos\left( \theta + \frac{4\pi}{3} \right)\], prove that \[xy + yz + zx = 0\]
उत्तर
\[x \cos\theta = y \cos\left( \theta + \frac{2\pi}{3} \right) = z \cos\left( \theta + \frac{4\pi}{3} \right)\]
\[ \Rightarrow \frac{\cos\theta}{\frac{1}{x}} = \frac{\cos\left( \theta + \frac{2\pi}{3} \right)}{\frac{1}{y}} = \frac{\cos\left( \theta + \frac{4\pi}{3} \right)}{\frac{1}{z}}\]
\[ \Rightarrow \frac{\cos\theta}{\frac{1}{x}} = \frac{\cos\left( \theta + \frac{2\pi}{3} \right)}{\frac{1}{y}} = \frac{\cos\left( \theta + \frac{4\pi}{3} \right)}{\frac{1}{z}} = \frac{\cos\theta + \cos\left( \theta + \frac{2\pi}{3} \right) + \cos\left( \theta + \frac{4\pi}{3} \right)}{\frac{1}{x} + \frac{1}{y} + \frac{1}{z}} \left( \frac{a}{b} = \frac{c}{d} = \frac{e}{f} = . . . = \frac{a + c + e + . . .}{b + d + f + . . .} \right)\]
\[x \cos\theta = y \cos\left( \theta + \frac{2\pi}{3} \right) = z \cos\left( \theta + \frac{4\pi}{3} \right)\]
\[ \Rightarrow \frac{\cos\theta}{\frac{1}{x}} = \frac{\cos\left( \theta + \frac{2\pi}{3} \right)}{\frac{1}{y}} = \frac{\cos\left( \theta + \frac{4\pi}{3} \right)}{\frac{1}{z}}\]
\[ \Rightarrow \frac{\cos\theta}{\frac{1}{x}} = \frac{\cos\left( \theta + \frac{2\pi}{3} \right)}{\frac{1}{y}} = \frac{\cos\left( \theta + \frac{4\pi}{3} \right)}{\frac{1}{z}} = \frac{\cos\theta + \cos\left( \theta + \frac{2\pi}{3} \right) + \cos\left( \theta + \frac{4\pi}{3} \right)}{\frac{1}{x} + \frac{1}{y} + \frac{1}{z}} \left( \frac{a}{b} = \frac{c}{d} = \frac{e}{f} = . . . = \frac{a + c + e + . . .}{b + d + f + . . .} \right)\]
\[\Rightarrow \frac{\cos\theta}{\frac{1}{x}} = \frac{\cos\left( \theta + \frac{2\pi}{3} \right)}{\frac{1}{y}} = \frac{\cos\left( \theta + \frac{4\pi}{3} \right)}{\frac{1}{z}} = \frac{0}{\frac{1}{x} + \frac{1}{y} + \frac{1}{z}}\]
\[ \Rightarrow \frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 0\]
\[ \Rightarrow \frac{yz + zx + xy}{xyz} = 0\]
\[ \Rightarrow xy + yz + zx = 0\]
APPEARS IN
संबंधित प्रश्न
Prove that:
Prove that:
Show that:
sin A sin (B − C) + sin B sin (C − A) + sin C sin (A − B) = 0
Prove that:
sin 50° + sin 10° = cos 20°
Prove that:
sin 40° + sin 20° = cos 10°
Prove that:
cos 55° + cos 65° + cos 175° = 0
Prove that:
\[\sin\frac{5\pi}{18} - \cos\frac{4\pi}{9} = \sqrt{3} \sin\frac{\pi}{9}\]
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
sin 47° + cos 77° = cos 17°
Prove that:
cos A + cos 3A + cos 5A + cos 7A = 4 cos A cos 2A cos 4A
Prove that:
`sin A + sin 2A + sin 4A + sin 5A = 4 cos (A/2) cos((3A)/2)sin3A`
Prove that:
cos 20° cos 100° + cos 100° cos 140° − 140° cos 200° = −\[\frac{3}{4}\]
Prove that:
Prove that:
If cosec A + sec A = cosec B + sec B, prove that tan A tan B = \[\cot\frac{A + B}{2}\].
Prove that:
sin (B − C) cos (A − D) + sin (C − A) cos (B − D) + sin (A − B) cos (C − D) = 0
If \[m \sin\theta = n \sin\left( \theta + 2\alpha \right)\], prove that \[\tan\left( \theta + \alpha \right) \cot\alpha = \frac{m + n}{m - n}\]
If A + B = \[\frac{\pi}{3}\] and cos A + cos B = 1, then find the value of cos \[\frac{A - B}{2}\].
Write the value of \[\sin\frac{\pi}{15}\sin\frac{4\pi}{15}\sin\frac{3\pi}{10}\]
If cos (A + B) sin (C − D) = cos (A − B) sin (C + D), then write the value of tan A tan B tan C.
If sin 2 θ + sin 2 ϕ = \[\frac{1}{2}\] and cos 2 θ + cos 2 ϕ = \[\frac{3}{2}\], then cos2 (θ − ϕ) =
cos 35° + cos 85° + cos 155° =
The value of sin 50° − sin 70° + sin 10° is equal to
sin 47° + sin 61° − sin 11° − sin 25° is equal to
If cos A = m cos B, then \[\cot\frac{A + B}{2} \cot\frac{B - A}{2}\]=
If A, B, C are in A.P., then \[\frac{\sin A - \sin C}{\cos C - \cos A}\]=
Express the following as the sum or difference of sine or cosine:
cos 7θ sin 3θ
Prove that:
`(cos 2"A" - cos 3"A")/(sin "2A" + sin "3A") = tan "A"/2`
Prove that cos 20° cos 40° cos 60° cos 80° = `3/16`.
Evaluate:
sin 50° – sin 70° + sin 10°
If cos A + cos B = `1/2` and sin A + sin B = `1/4`, prove that tan `(("A + B")/2) = 1/2`
If cosec A + sec A = cosec B + sec B prove that cot`(("A + B"))/2` = tan A tan B.