Advertisements
Advertisements
प्रश्न
Prove that cos 20° cos 40° cos 60° cos 80° = `3/16`.
उत्तर
LHS = cos 20° cos 40° cos 60° cos 80°
`= cos 20° cos 40° (1/2) cos 80° [∵ cos 60° = 1/2]`
`= 1/2 (cos 20° cos 40° cos 80°)`
`= 1/2 ((2 sin 20^circ)/(2 sin 20^circ))` (cos 20° cos 40° cos 80°)
[multiply and divide by 2 sin 20°]
`= 1/2 (((2 sin 20^circ cos 20^circ)cos 40^circ cos 80^circ)/(2 sin 20^circ))`
`= 1/2 (sin (2 xx 20^circ) cos 40^circ cos 80^circ)/(2 sin 20^circ)`
`= 1/2 (sin 40^circ cos 40^circ cos 80^circ)/(2 sin 20^circ)`
`= 1/2 1/2 xx (2 sin 40^circ cos 40^circ)/(2 sin 20^circ) xx cos 80^circ`
[multiply and divide by 2]
`= 1/2 1/2 xx ((sin 2 xx 40^circ)cos 80^circ)/(2 sin 20^circ)`
`= 1/2 1/2 xx (sin 80^circ cos 80^circ)/(2 sin 20^circ)`
`= 1/2 1/2 xx 1/2 ((2 sin 80^circ cos 80^circ))/(2 sin 20^circ)`
`= 1/2 1/8 xx (sin 160^circ)/(sin 20^circ)`
`= 1/8 xx (sin (180^circ - 20^circ))/(sin 20^circ)`
`= 1/2 1/8 xx (sin 20^circ)/(sin 20^circ)`
`= 1/2 1/8 xx 1`
`= 1/2 (1/8) = 1/16`
Hence Proved.
APPEARS IN
संबंधित प्रश्न
Prove that:
Prove that:
cos 10° cos 30° cos 50° cos 70° = \[\frac{3}{16}\]
Show that:
sin A sin (B − C) + sin B sin (C − A) + sin C sin (A − B) = 0
Prove that:
Prove that:
If sin A + sin B = α and cos A + cos B = β, then write the value of tan \[\left( \frac{A + B}{2} \right)\].
Write the value of \[\sin\frac{\pi}{15}\sin\frac{4\pi}{15}\sin\frac{3\pi}{10}\]
Prove that:
2 cos `pi/13` cos \[\frac{9\pi}{13} + \text{cos} \frac{3\pi}{13} + \text{cos} \frac{5\pi}{13}\] = 0
Evaluate-
cos 20° + cos 100° + cos 140°
Find the value of tan22°30′. `["Hint:" "Let" θ = 45°, "use" tan theta/2 = (sin theta/2)/(cos theta/2) = (2sin theta/2 cos theta/2)/(2cos^2 theta/2) = sintheta/(1 + costheta)]`