Advertisements
Advertisements
प्रश्न
Prove that:
2 cos `pi/13` cos \[\frac{9\pi}{13} + \text{cos} \frac{3\pi}{13} + \text{cos} \frac{5\pi}{13}\] = 0
उत्तर
LHS = 2 cos `pi/13` cos \[\frac{9\pi}{13} + \text{cos} \frac{3\pi}{13} + \text{cos} \frac{5\pi}{13}\]
`= 2 cos pi/13 cos (9pi)/13 + 2(cos ((3pi)/13 + (5pi)/13)/2) xx (cos ((3pi)/13 - (5pi)/13)/2)`
`[∵ cos "C" + cos "D" = 2 cos (("C + D")/2) cos (("C - D")/2)]`
`= 2 cos pi/13 cos (9pi)/13 + 2(cos ((8pi)/13)/2) xx (cos (-(2pi)/13)/2)`
`= 2 cos pi/13 cos (9pi)/13 + 2cos (4pi)/13 cos ((-pi)/13)`
[∵ cos(-θ) = cos θ]
`= 2 cos pi/13 cos (9pi)/13 + 2cos (4pi)/13 cos pi/13`
`= 2 cos pi/13 (cos (9pi)/13 + cos (4pi)/13)`
[take 2 cos `pi/3` as common]
`= 2 cos pi/13 (2 cos (((9pi + 4pi)/13))/2 cos ((9pi - 4pi)/13)/2)`
`= 2 cos pi/13 (2 cos (13pi)/(13 xx 2) cos (5pi)/(13 xx 2))`
`= 2 cos pi/13 (2 cos pi/2 cos (5pi)/2)`
`= 2 cos pi/13 (0 xx cos (5pi)/(13 xx 2))`
= 0 = RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
Show that:
sin (B − C) cos (A − D) + sin (C − A) cos (B − D) + sin (A − B) cos (C − D) = 0
Express each of the following as the product of sines and cosines:
sin 12x + sin 4x
Express each of the following as the product of sines and cosines:
cos 12x - cos 4x
Prove that:
\[\sin\frac{5\pi}{18} - \cos\frac{4\pi}{9} = \sqrt{3} \sin\frac{\pi}{9}\]
Prove that:
Prove that:
Prove that:
Prove that:
`(cos 2"A" - cos 3"A")/(sin "2A" + sin "3A") = tan "A"/2`
Prove that:
`(cos 7"A" +cos 5"A")/(sin 7"A" −sin 5"A")` = cot A
If secx cos5x + 1 = 0, where 0 < x ≤ `pi/2`, then find the value of x.