Advertisements
Advertisements
प्रश्न
Prove that:
`(cos 7"A" +cos 5"A")/(sin 7"A" −sin 5"A")` = cot A
उत्तर
LHS = `(cos 7"A" +cos 5"A")/(sin 7"A" −sin 5"A")`
`= (2 cos ((7"A" + 5"A")/2) cos((7"A" - 5"A")/2))/(2 cos ((7"A" + 5"A")/2) sin((7"A" - 5"A")/2))`
`[∵ cos "C" + cos "D" = 2 cos (("C + D")/2) cos (("C - D")/2)]`
`= (2 cos 6"A" cos "A")/(2 cos 6"A" sin "A")`
`= (cos "A")/(sin "A")`
= cot A = RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove that:
cos 20° cos 40° cos 80° = \[\frac{1}{8}\]
Prove that:
\[\sin\frac{5\pi}{18} - \cos\frac{4\pi}{9} = \sqrt{3} \sin\frac{\pi}{9}\]
Prove that:
Prove that:
Write the value of the expression \[\frac{1 - 4 \sin 10^\circ \sin 70^\circ}{2 \sin 10^\circ}\]
If sin 2A = λ sin 2B, then write the value of \[\frac{\lambda + 1}{\lambda - 1}\]
Express the following as the product of sine and cosine.
cos 2A + cos 4A
Express the following as the product of sine and cosine.
sin 6θ – sin 2θ
Prove that:
sin (A – B) sin C + sin (B – C) sin A + sin(C – A) sin B = 0
If cos A + cos B = `1/2` and sin A + sin B = `1/4`, prove that tan `(("A + B")/2) = 1/2`