Advertisements
Advertisements
प्रश्न
Express the following as the product of sine and cosine.
cos 2A + cos 4A
उत्तर
cos 2A + cos 4A = 2 cos`(("2A + 4A")/2) cos (("2A - 4A")/2)` ...`[∵ cos "C" + cos "D" = 2 cos (("C + D")/2) cos (("C - D")/2)]`
= 2 cos `((6"A")/2) cos ((6 - 2"A")/2)`
= 2 cos(3A) cos (-A) ...[∵ cos(-θ) = cos θ]
= 2 cos 3A cos A
APPEARS IN
संबंधित प्रश्न
Prove that tan 20° tan 30° tan 40° tan 80° = 1.
Prove that:
sin 38° + sin 22° = sin 82°
Prove that:
\[\sin\frac{5\pi}{18} - \cos\frac{4\pi}{9} = \sqrt{3} \sin\frac{\pi}{9}\]
Prove that:
sin 3A + sin 2A − sin A = 4 sin A cos \[\frac{A}{2}\] \[\frac{3A}{2}\]
If cosec A + sec A = cosec B + sec B, prove that tan A tan B = \[\cot\frac{A + B}{2}\].
If A + B = \[\frac{\pi}{3}\] and cos A + cos B = 1, then find the value of cos \[\frac{A - B}{2}\].
If sin 2 θ + sin 2 ϕ = \[\frac{1}{2}\] and cos 2 θ + cos 2 ϕ = \[\frac{3}{2}\], then cos2 (θ − ϕ) =
sin 47° + sin 61° − sin 11° − sin 25° is equal to
Prove that cos 20° cos 40° cos 60° cos 80° = `3/16`.