हिंदी

Prove that cos⁡xcos⁡x2−cos⁡3xcos⁡9x2=sin⁡7xsin⁡8x - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that \[\cos x \cos \frac{x}{2} - \cos 3x \cos\frac{9x}{2} = \sin 7x \sin 8x\]
योग

उत्तर

\[\text{ LHS }= \cos x \cos\frac{x}{2} - \cos 3x \cos\frac{9x}{2}\]

\[ = \frac{1}{2}\left[ 2\cos x \cos\frac{x}{2} - 2\cos 3x \cos\frac{9x}{2} \right]\]

\[ = \frac{1}{2}\left[ \cos\left( x + \frac{x}{2} \right) + \cos\left( x - \frac{x}{2} \right) - \cos\left( 3x + \frac{9x}{2} \right) - \cos\left( 3x - \frac{9x}{2} \right) \right]\]

\[ = \frac{1}{2}\left[ \cos\frac{3x}{2} + \cos\frac{x}{2} - \cos\frac{15x}{2} - \cos\frac{3x}{2} \right]\]

\[ = \frac{1}{2}\left[ \cos\frac{x}{2} - \cos\frac{15x}{2} \right]\]

\[ = \frac{1}{2}\left[ - 2\sin\left( \frac{x + 15x}{4} \right)\sin\left( \frac{x - 15x}{4} \right) \right]\]

\[ = \frac{1}{2}\left[ - 2\sin\left( 4x \right)\sin\left( - \frac{7x}{2} \right) \right]\]

\[ = \sin\left( 4x \right)\sin\left( \frac{7x}{2} \right) = \text{ RHS }\]

Hence, LHS = RHS

shaalaa.com

Notes

Disclaimer: The given question is incorrect. The correct question should be

\[\cos x \cos \frac{x}{2} - \cos 3x \cos\frac{9x}{2} = \sin 4x \sin \frac{7x}{2}\]
Transformation Formulae
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Transformation formulae - Exercise 8.2 [पृष्ठ १८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 8 Transformation formulae
Exercise 8.2 | Q 6.7 | पृष्ठ १८

संबंधित प्रश्न

Prove that:

\[2\sin\frac{5\pi}{12}\sin\frac{\pi}{12} = \frac{1}{2}\]

 


Show that :

\[\sin 25^\circ \cos 115^\circ = \frac{1}{2}\left( \sin 140^\circ - 1 \right)\]

Prove that:
cos 20° cos 40° cos 80° = \[\frac{1}{8}\]

 


Prove that:
 sin 20° sin 40° sin 60° sin 80° = \[\frac{3}{16}\]

 


Express each of the following as the product of sines and cosines:
 cos 12x + cos 8x


Express each of the following as the product of sines and cosines:
 cos 12x - cos 4x


Express each of the following as the product of sines and cosines:
sin 2x + cos 4x


Prove that:
sin 105° + cos 105° = cos 45°


Prove that:
 sin 50° − sin 70° + sin 10° = 0



Prove that:
 `sin A + sin 2A + sin 4A + sin 5A = 4 cos (A/2) cos((3A)/2)sin3A`


Prove that:
sin 3A + sin 2A − sin A = 4 sin A cos \[\frac{A}{2}\] \[\frac{3A}{2}\]

 


Prove that:
\[\sin\frac{x}{2}\sin\frac{7x}{2} + \sin\frac{3x}{2}\sin\frac{11x}{2} = \sin 2x \sin 5x .\]

 


Prove that:

\[\frac{\cos 3A + 2 \cos 5A + \cos 7A}{\cos A + 2 \cos 3A + \cos 5A} = \frac{\cos 5A}{\cos 3A}\]

Prove that:

\[\frac{\sin A + \sin 3A + \sin 5A}{\cos A + \cos 3A + \cos 5A} = \tan 3A\]

 


Prove that:

\[\frac{\sin 3A + \sin 5A + \sin 7A + \sin 9A}{\cos 3A + \cos 5A + \cos 7A + \cos 9A} = \tan 6A\]

Prove that:

\[\frac{\cos (A + B + C) + \cos ( - A + B + C) + \cos (A - B + C) + \cos (A + B - C)}{\sin (A + B + C) + \sin ( - A + B + C) + \sin (A - B + C) - \sin (A + B - C)} = \cot C\]

If cos (α + β) sin (γ + δ) = cos (α − β) sin (γ − δ), prove that cot α cot β cot γ = cot δ

 

If y sin ϕ = x sin (2θ + ϕ), prove that (x + y) cot (θ + ϕ) = (y − x) cot θ.

 

If \[m \sin\theta = n \sin\left( \theta + 2\alpha \right)\], prove that \[\tan\left( \theta + \alpha \right) \cot\alpha = \frac{m + n}{m - n}\]


If (cos α + cos β)2 + (sin α + sin β)2 = \[\lambda \cos^2 \left( \frac{\alpha - \beta}{2} \right)\], write the value of λ. 


If sin A + sin B = α and cos A + cos B = β, then write the value of tan \[\left( \frac{A + B}{2} \right)\].

 

If sin 2 θ + sin 2 ϕ = \[\frac{1}{2}\] and cos 2 θ + cos 2 ϕ = \[\frac{3}{2}\], then cos2 (θ − ϕ) =

 

 


The value of sin 78° − sin 66° − sin 42° + sin 60° is ______.


cos 35° + cos 85° + cos 155° =


sin 47° + sin 61° − sin 11° − sin 25° is equal to


If cos A = m cos B, then \[\cot\frac{A + B}{2} \cot\frac{B - A}{2}\]=

 

If sin (B + C − A), sin (C + A − B), sin (A + B − C) are in A.P., then cot A, cot B and cot Care in


Express the following as the sum or difference of sine or cosine:

`cos  (7"A")/3 sin  (5"A")/3`


Express the following as the product of sine and cosine.

cos 2θ – cos θ


Prove that:

cos 20° cos 40° cos 80° = `1/8`


Prove that:

(cos α – cos β)2 + (sin α – sin β)2 = 4 sin2 `((alpha - beta)/2)`


Prove that:

sin (A – B) sin C + sin (B – C) sin A + sin(C – A) sin B = 0


Prove that cos 20° cos 40° cos 60° cos 80° = `3/16`.


If cos A + cos B = `1/2` and sin A + sin B = `1/4`, prove that tan `(("A + B")/2) = 1/2`


If cosec A + sec A = cosec B + sec B prove that cot`(("A + B"))/2` = tan A tan B.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×