हिंदी

Prove That: Sin 50° − Sin 70° + Sin 10° = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that:
 sin 50° − sin 70° + sin 10° = 0


योग

उत्तर

Consider LHS: 
\[\sin 50^\circ - \sin 70^\circ + \sin 10^\circ\]
\[ = 2\sin \left( \frac{50^\circ - 70^\circ}{2} \right) \cos \left( \frac{50^\circ + 70^\circ}{2} \right) + \sin 10^\circ \left\{ \because \sin A - \sin B = 2\sin \left( \frac{A - B}{2} \right) \cos \left( \frac{A + B}{2} \right) \right\}\]
\[ = 2\sin \left( - 10^\circ \right) \cos 60^\circ + \sin 10^\circ\]
\[ = 2 \times \frac{1}{2}\sin \left( - 10^\circ \right) + \sin 10^\circ\]
\[ = - \sin 10^\circ + \sin 10^\circ\]
\[ = 0\]
Hence, LHS = RHS.

shaalaa.com
Transformation Formulae
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Transformation formulae - Exercise 8.2 [पृष्ठ १७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 8 Transformation formulae
Exercise 8.2 | Q 3.2 | पृष्ठ १७

संबंधित प्रश्न

Prove that:

\[2\sin\frac{5\pi}{12}\sin\frac{\pi}{12} = \frac{1}{2}\]

 


Prove that:

\[2\cos\frac{5\pi}{12}\cos\frac{\pi}{12} = \frac{1}{2}\]

Show that :

\[\sin 50^\circ \cos 85^\circ = \frac{1 - \sqrt{2} \sin 35^\circ}{2\sqrt{2}}\]

\[\text{ Prove that }4 \cos x \cos\left( \frac{\pi}{3} + x \right) \cos \left( \frac{\pi}{3} - x \right) = \cos 3x .\]

 


Prove that:
cos 10° cos 30° cos 50° cos 70° = \[\frac{3}{16}\]

 


Prove that:
sin 10° sin 50° sin 60° sin 70° = \[\frac{\sqrt{3}}{16}\]

 


Prove that:
 sin 20° sin 40° sin 60° sin 80° = \[\frac{3}{16}\]

 


Express each of the following as the product of sines and cosines:
sin 12x + sin 4x


Express each of the following as the product of sines and cosines:
sin 2x + cos 4x


Prove that:
sin 50° + sin 10° = cos 20°


Prove that:
sin 105° + cos 105° = cos 45°


Prove that:
sin 40° + sin 20° = cos 10°


Prove that:
 cos 80° + cos 40° − cos 20° = 0


Prove that:
cos 20° + cos 100° + cos 140° = 0


Prove that:

sin 51° + cos 81° = cos 21°

Prove that:

\[\cos\left( \frac{3\pi}{4} + x \right) - \cos\left( \frac{3\pi}{4} - x \right) = - \sqrt{2} \sin x\]

 


Prove that:
\[\sin\frac{x}{2}\sin\frac{7x}{2} + \sin\frac{3x}{2}\sin\frac{11x}{2} = \sin 2x \sin 5x .\]

 


Prove that \[\cos x \cos \frac{x}{2} - \cos 3x \cos\frac{9x}{2} = \sin 7x \sin 8x\]

Prove that:

\[\frac{\sin 5A \cos 2A - \sin 6A \cos A}{\sin A \sin 2A - \cos 2A \cos 3A} = \tan A\]

Prove that:

\[\frac{\sin 11A \sin A + \sin 7A \sin 3A}{\cos 11A \sin A + \cos 7A \sin 3A} = \tan 8A\]

Prove that:

\[\frac{\sin \left( \theta + \phi \right) - 2 \sin \theta + \sin \left( \theta - \phi \right)}{\cos \left( \theta + \phi \right) - 2 \cos \theta + \cos \left( \theta - \phi \right)} = \tan \theta\]

Prove that:

\[\sin \alpha + \sin \beta + \sin \gamma - \sin (\alpha + \beta + \gamma) = 4 \sin \left( \frac{\alpha + \beta}{2} \right) \sin \left( \frac{\beta + \gamma}{2} \right) \sin \left( \frac{\gamma + \alpha}{2} \right)\]

 


\[\text{ If } \cos A + \cos B = \frac{1}{2}\text{ and }\sin A + \sin B = \frac{1}{4},\text{ prove that }\tan\left( \frac{A + B}{2} \right) = \frac{1}{2} .\]

 


Prove that:
 sin (B − C) cos (A − D) + sin (C − A) cos (B − D) + sin (A − B) cos (C − D) = 0


If (cos α + cos β)2 + (sin α + sin β)2 = \[\lambda \cos^2 \left( \frac{\alpha - \beta}{2} \right)\], write the value of λ. 


Write the value of \[\frac{\sin A + \sin 3A}{\cos A + \cos 3A}\]


The value of cos 52° + cos 68° + cos 172° is


The value of sin 78° − sin 66° − sin 42° + sin 60° is ______.


sin 47° + sin 61° − sin 11° − sin 25° is equal to


If cos A = m cos B, then \[\cot\frac{A + B}{2} \cot\frac{B - A}{2}\]=

 

Prove that:

tan 20° tan 40° tan 80° = `sqrt3`.


Prove that cos 20° cos 40° cos 60° cos 80° = `3/16`.


Evaluate:

sin 50° – sin 70° + sin 10°


If tan θ = `1/sqrt5` and θ lies in the first quadrant then cos θ is:


Find the value of tan22°30′. `["Hint:"  "Let" θ = 45°, "use" tan  theta/2 = (sin  theta/2)/(cos  theta/2) = (2sin  theta/2 cos  theta/2)/(2cos^2  theta/2) = sintheta/(1 + costheta)]`


If secx cos5x + 1 = 0, where 0 < x ≤ `pi/2`, then find the value of x.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×