Advertisements
Advertisements
प्रश्न
उत्तर
Given:
sin A + sin B = \[\frac{1}{4}\] .....(i)
cos A + cos B = \[\frac{1}{2}\] .....(ii)
Dividing (i) by (ii):
\[\Rightarrow \frac{\sin A + \sin B}{\cos A + \cos B} = \frac{\frac{1}{4}}{\frac{1}{2}}\]
\[ \Rightarrow \frac{2\sin\left( \frac{A + B}{2} \right)\cos\left( \frac{A - B}{2} \right)}{2\cos\left( \frac{A + B}{2} \right)\cos\left( \frac{A - B}{2} \right)} = \frac{1}{2} \left[ \because \sin A + \sin B = 2\sin\left( \frac{A + B}{2} \right)\cos\left( \frac{A - B}{2} \right)\text{ and }\cos A + \cos B = 2\cos\left( \frac{A + B}{2} \right)\cos\left( \frac{A - B}{2} \right) \right]\]
\[ \Rightarrow \frac{\sin\left( \frac{A + B}{2} \right)\cos\left( \frac{A - B}{2} \right)}{\cos\left( \frac{A + B}{2} \right)\cos\left( \frac{A - B}{2} \right)} = \frac{1}{2}\]
\[ \Rightarrow \tan\left( \frac{A + B}{2} \right)=\frac{1}{2}\]
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove that:
Prove that tan 20° tan 30° tan 40° tan 80° = 1.
Prove that:
sin 20° sin 40° sin 60° sin 80° = \[\frac{3}{16}\]
Express each of the following as the product of sines and cosines:
sin 12x + sin 4x
Express each of the following as the product of sines and cosines:
sin 5x − sin x
Prove that:
sin 23° + sin 37° = cos 7°
Prove that:
sin 40° + sin 20° = cos 10°
Prove that:
sin 50° − sin 70° + sin 10° = 0
Prove that:
cos 80° + cos 40° − cos 20° = 0
Prove that:
cos 20° + cos 100° + cos 140° = 0
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
If cosec A + sec A = cosec B + sec B, prove that tan A tan B = \[\cot\frac{A + B}{2}\].
Prove that:
sin (B − C) cos (A − D) + sin (C − A) cos (B − D) + sin (A − B) cos (C − D) = 0
Write the value of the expression \[\frac{1 - 4 \sin 10^\circ \sin 70^\circ}{2 \sin 10^\circ}\]
Write the value of \[\sin\frac{\pi}{15}\sin\frac{4\pi}{15}\sin\frac{3\pi}{10}\]
If sin 2A = λ sin 2B, then write the value of \[\frac{\lambda + 1}{\lambda - 1}\]
The value of sin 78° − sin 66° − sin 42° + sin 60° is ______.
If cos A = m cos B, then \[\cot\frac{A + B}{2} \cot\frac{B - A}{2}\]=
If sin (B + C − A), sin (C + A − B), sin (A + B − C) are in A.P., then cot A, cot B and cot Care in
Express the following as the product of sine and cosine.
sin A + sin 2A
Express the following as the product of sine and cosine.
cos 2A + cos 4A
Express the following as the product of sine and cosine.
sin 6θ – sin 2θ
Express the following as the product of sine and cosine.
cos 2θ – cos θ
Prove that:
sin A sin(60° + A) sin(60° – A) = `1/4` sin 3A
Prove that:
`(cos 7"A" +cos 5"A")/(sin 7"A" −sin 5"A")` = cot A
Find the value of tan22°30′. `["Hint:" "Let" θ = 45°, "use" tan theta/2 = (sin theta/2)/(cos theta/2) = (2sin theta/2 cos theta/2)/(2cos^2 theta/2) = sintheta/(1 + costheta)]`