Advertisements
Advertisements
प्रश्न
Prove that:
cos 20° + cos 100° + cos 140° = 0
उत्तर
Consider LHS:
\[\cos 20^\circ + \cos 100^\circ + \cos 140^\circ\]
\[ = 2\cos \left( \frac{20^\circ + 100^\circ}{2} \right) \cos \left( \frac{20^\circ - 100^\circ}{2} \right) + \cos 140^\circ \left\{ \because \cos A + \cos B = 2\cos\left( \frac{A + B}{2} \right)\cos\left( \frac{A - B}{2} \right) \right\}\]
\[ = 2\cos 60^\circ \cos \left( - 40^\circ \right) + \cos 140^\circ\]
\[ = 2 \times \frac{1}{2}\cos 40^\circ + \cos 140^\circ\]
\[ = \cos 40^\circ+ \cos 140^\circ\]
\[ = 2\cos \left( \frac{40^\circ + 140^\circ}{2} \right) \cos \left( \frac{40^\circ - 140^\circ}{2} \right)\]
\[ = 2 \cos 90^\circ \cos 50^\circ\]
\[ = 0\]
Hence, LHS = RHS.
APPEARS IN
संबंधित प्रश्न
Prove that:
Prove that:
Show that :
Prove that:
cos 20° cos 40° cos 80° = \[\frac{1}{8}\]
Prove that tan 20° tan 30° tan 40° tan 80° = 1.
Show that:
sin (B − C) cos (A − D) + sin (C − A) cos (B − D) + sin (A − B) cos (C − D) = 0
Prove that
\[\tan x \tan \left( \frac{\pi}{3} - x \right) \tan \left( \frac{\pi}{3} + x \right) = \tan 3x\]
Express each of the following as the product of sines and cosines:
sin 12x + sin 4x
Prove that:
sin 50° + sin 10° = cos 20°
Prove that:
sin 105° + cos 105° = cos 45°
Prove that:
Prove that:
Prove that:
cos A + cos 3A + cos 5A + cos 7A = 4 cos A cos 2A cos 4A
Prove that:
Prove that:
Prove that:
Prove that:
If \[x \cos\theta = y \cos\left( \theta + \frac{2\pi}{3} \right) = z \cos\left( \theta + \frac{4\pi}{3} \right)\], prove that \[xy + yz + zx = 0\]
Write the value of sin \[\frac{\pi}{12}\] sin \[\frac{5\pi}{12}\].
If sin A + sin B = α and cos A + cos B = β, then write the value of tan \[\left( \frac{A + B}{2} \right)\].
Write the value of the expression \[\frac{1 - 4 \sin 10^\circ \sin 70^\circ}{2 \sin 10^\circ}\]
If A + B = \[\frac{\pi}{3}\] and cos A + cos B = 1, then find the value of cos \[\frac{A - B}{2}\].
If sin 2A = λ sin 2B, then write the value of \[\frac{\lambda + 1}{\lambda - 1}\]
If cos (A + B) sin (C − D) = cos (A − B) sin (C + D), then write the value of tan A tan B tan C.
cos 40° + cos 80° + cos 160° + cos 240° =
The value of sin 50° − sin 70° + sin 10° is equal to
If A, B, C are in A.P., then \[\frac{\sin A - \sin C}{\cos C - \cos A}\]=
If sin x + sin y = \[\sqrt{3}\] (cos y − cos x), then sin 3x + sin 3y =
Express the following as the product of sine and cosine.
sin A + sin 2A
Prove that:
cos 20° cos 40° cos 80° = `1/8`
Prove that:
tan 20° tan 40° tan 80° = `sqrt3`.
Prove that:
(cos α – cos β)2 + (sin α – sin β)2 = 4 sin2 `((alpha - beta)/2)`
Prove that:
`(cos 2"A" - cos 3"A")/(sin "2A" + sin "3A") = tan "A"/2`
Evaluate-
cos 20° + cos 100° + cos 140°
If cos A + cos B = `1/2` and sin A + sin B = `1/4`, prove that tan `(("A + B")/2) = 1/2`
If cosec A + sec A = cosec B + sec B prove that cot`(("A + B"))/2` = tan A tan B.
Find the value of tan22°30′. `["Hint:" "Let" θ = 45°, "use" tan theta/2 = (sin theta/2)/(cos theta/2) = (2sin theta/2 cos theta/2)/(2cos^2 theta/2) = sintheta/(1 + costheta)]`