हिंदी

Prove That: Sin 3 a Cos 4 a − Sin a Cos 2 a Sin 4 a Sin a + Cos 6 a Cos a = Tan 2 a - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that:

\[\frac{\sin 3A \cos 4A - \sin A \cos 2A}{\sin 4A \sin A + \cos 6A \cos A} = \tan 2A\]
योग

उत्तर

Consider LHS: 
\[ \frac{\sin 3A \cos 4A - \sin A \cos 2A}{\sin 4A sin A + \cos 6A \cos A}\]
Multiplying numerator and denominator by 2, we get
\[ = \frac{2\sin 3A \cos 4A - 2\sin A \cos 2A}{2\sin 4A \sin A + 2\cos 6A \cos A}\]
\[ = \frac{\sin \left( 3A + 4A \right) + \sin \left( 3A - 4A \right) - \sin \left( A + 2A \right) - \sin \left( A - 2A \right)}{\cos \left( 4A - A \right) - \cos \left( 4A + A \right) + \cos \left( 6A + A \right) + \cos \left( 6A - A \right)}\]
\[ = \frac{\sin 7A + \sin \left( - A \right) - \sin 3A - \sin \left( - A \right)}{\cos 3A - \cos 5A + \cos 7A + \cos 5A}\]
\[ = \frac{\sin 7A - \sin A - \sin 3A + \sin A}{\cos 3A - \cos 5A + \cos 7A + \cos 5A}\]
\[ = \frac{\sin 7A - \sin 3A}{\cos 3A + \cos 7A}\]
\[ = \frac{2\sin \left( \frac{7A - 3A}{2} \right) \cos \left( \frac{7A + 3A}{2} \right)}{2\cos \left( \frac{3A + 7A}{2} \right) \cos \left( \frac{3A - 7A}{2} \right)}\]
\[ = \frac{\sin 2A \cos 5A}{\cos 5A \cos \left( - 2A \right)}\]
\[ = \frac{\sin 2A \cos 5A}{\cos 5A \cos 2A}\]
\[ = \tan 2A\]
 = RHS
Hence, LHS = RHS.

shaalaa.com
Transformation Formulae
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Transformation formulae - Exercise 8.2 [पृष्ठ १८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 8 Transformation formulae
Exercise 8.2 | Q 8.08 | पृष्ठ १८

संबंधित प्रश्न

Prove that:
cos 40° cos 80° cos 160° = \[- \frac{1}{8}\]

 


Prove that:
tan 20° tan 40° tan 60° tan 80° = 3

 


Prove that:
sin 10° sin 50° sin 60° sin 70° = \[\frac{\sqrt{3}}{16}\]

 


Show that:
sin A sin (B − C) + sin B sin (C − A) + sin C sin (A − B) = 0


Show that:
sin (B − C) cos (A − D) + sin (C − A) cos (B − D) + sin (A − B) cos (C − D) = 0


Prove that:
sin 105° + cos 105° = cos 45°


Prove that:
\[\sin\frac{5\pi}{18} - \cos\frac{4\pi}{9} = \sqrt{3} \sin\frac{\pi}{9}\]


Prove that:

\[\cos\frac{\pi}{12} - \sin\frac{\pi}{12} = \frac{1}{\sqrt{2}}\]

 


Prove that:

sin 80° − cos 70° = cos 50°

Prove that:

sin 51° + cos 81° = cos 21°

Prove that:

\[\sin 65^\circ + \cos 65^\circ = \sqrt{2} \cos 20^\circ\]

Prove that:

\[\frac{\sin A - \sin B}{\cos A + \cos B} = \tan\frac{A - B}{2}\]

Prove that:

\[\frac{\sin 3A + \sin 5A + \sin 7A + \sin 9A}{\cos 3A + \cos 5A + \cos 7A + \cos 9A} = \tan 6A\]

Prove that:

\[\frac{\sin 5A - \sin 7A + \sin 8A - \sin 4A}{\cos 4A + \cos 7A - \cos 5A - \cos 8A} = \cot 6A\]

Prove that:

\[\frac{\sin 11A \sin A + \sin 7A \sin 3A}{\cos 11A \sin A + \cos 7A \sin 3A} = \tan 8A\]

Prove that:

\[\frac{\sin A + 2 \sin 3A + \sin 5A}{\sin 3A + 2 \sin 5A + \sin 7A} = \frac{\sin 3A}{\sin 5A}\]

Prove that:
cos (A + B + C) + cos (A − B + C) + cos (A + B − C) + cos (− A + B + C) = 4 cos A cos Bcos C


Prove that:

\[\frac{\cos (A + B + C) + \cos ( - A + B + C) + \cos (A - B + C) + \cos (A + B - C)}{\sin (A + B + C) + \sin ( - A + B + C) + \sin (A - B + C) - \sin (A + B - C)} = \cot C\]

Prove that:
 sin (B − C) cos (A − D) + sin (C − A) cos (B − D) + sin (A − B) cos (C − D) = 0


If y sin ϕ = x sin (2θ + ϕ), prove that (x + y) cot (θ + ϕ) = (y − x) cot θ.

 

If \[x \cos\theta = y \cos\left( \theta + \frac{2\pi}{3} \right) = z \cos\left( \theta + \frac{4\pi}{3} \right)\], prove that \[xy + yz + zx = 0\]

 

 


If \[m \sin\theta = n \sin\left( \theta + 2\alpha \right)\], prove that \[\tan\left( \theta + \alpha \right) \cot\alpha = \frac{m + n}{m - n}\]


If (cos α + cos β)2 + (sin α + sin β)2 = \[\lambda \cos^2 \left( \frac{\alpha - \beta}{2} \right)\], write the value of λ. 


If sin A + sin B = α and cos A + cos B = β, then write the value of tan \[\left( \frac{A + B}{2} \right)\].

 

If cos A = m cos B, then write the value of \[\cot\frac{A + B}{2} \cot\frac{A - B}{2}\].

 

Write the value of the expression \[\frac{1 - 4 \sin 10^\circ \sin 70^\circ}{2 \sin 10^\circ}\]


If A + B = \[\frac{\pi}{3}\] and cos A + cos B = 1, then find the value of cos \[\frac{A - B}{2}\].

 

 


If sin 2A = λ sin 2B, then write the value of \[\frac{\lambda + 1}{\lambda - 1}\]


Write the value of \[\frac{\sin A + \sin 3A}{\cos A + \cos 3A}\]


If sin 2 θ + sin 2 ϕ = \[\frac{1}{2}\] and cos 2 θ + cos 2 ϕ = \[\frac{3}{2}\], then cos2 (θ − ϕ) =

 

 


The value of cos 52° + cos 68° + cos 172° is


If sin (B + C − A), sin (C + A − B), sin (A + B − C) are in A.P., then cot A, cot B and cot Care in


If sin x + sin y = \[\sqrt{3}\] (cos y − cos x), then sin 3x + sin 3y =

 


Express the following as the product of sine and cosine.

cos 2A + cos 4A


Prove that:

`(cos 2"A" - cos 3"A")/(sin "2A" + sin "3A") = tan  "A"/2`


Prove that:

`(cos 7"A" +cos 5"A")/(sin 7"A" −sin 5"A")` = cot A


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×