हिंदी

Show That: Sin A Sin (B − C) + Sin B Sin (C − A) + Sin C Sin (A − B) = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

Show that:
sin A sin (B − C) + sin B sin (C − A) + sin C sin (A − B) = 0

योग

उत्तर

Consider LHS: 
\[\sin A \sin \left( B - C \right) + \sin B \sin \left( C - A \right) + \sin C \sin \left( A - B \right)\]
\[ = \frac{1}{2}\left[ 2\sin A \sin \left( B - C \right) \right] + \frac{1}{2}\left[ 2\sin B \sin \left( C - A \right) \right] + \frac{1}{2}\left[ 2\sin C \sin \left( A - B \right) \right]\]
\[ = \frac{1}{2}\left[ \cos \left\{ A - \left( B - C \right) \right\} - \cos \left\{ A + \left( B - C \right) \right\} \right] + \frac{1}{2}\left[ \cos \left\{ B - \left( C - A \right) \right\} - \cos \left\{ B + \left( C - A \right) \right\} \right] + \frac{1}{2}\left[ \cos \left\{ C - \left( A - B \right) \right\} - \cos \left\{ C + \left( A - B \right) \right\} \right]\]
\[ = \frac{1}{2}\left[ \cos \left( A - B + C \right) - \cos \left( A + B - C \right) \right] + \frac{1}{2}\left[ \cos \left( B - C + A \right) - \cos\left( B + C - A \right) \right] + \frac{1}{2}\left[ \cos\left( C - A + B \right) - \cos\left( C + A - B \right) \right]\]
\[ = \frac{1}{2}\cos\left( A - B + C \right) - \frac{1}{2}\cos \left( A + B - C \right) + \frac{1}{2}\cos \left( B - C + A \right) - \frac{1}{2}\cos \left( B + C - A \right) + \frac{1}{2}\cos \left( C - A + B \right) - \frac{1}{2}\cos\left( C + A - B \right)\]
\[ = \frac{1}{2}\cos\left( A - B + C \right) - \frac{1}{2}\cos\left( A + B - C \right) + \frac{1}{2}\cos\left( A + B - C \right) - \frac{1}{2}\cos\left( B + C - A \right) + \frac{1}{2}\cos\left( B + C - A \right) - \frac{1}{2}\cos\left( A - B + C \right)\]
\[ = 0\]
 = RHS

shaalaa.com
Transformation Formulae
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Transformation formulae - Exercise 8.1 [पृष्ठ ७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 8 Transformation formulae
Exercise 8.1 | Q 6.1 | पृष्ठ ७

संबंधित प्रश्न

Show that :

\[\sin 25^\circ \cos 115^\circ = \frac{1}{2}\left( \sin 140^\circ - 1 \right)\]

\[\text{ Prove that }4 \cos x \cos\left( \frac{\pi}{3} + x \right) \cos \left( \frac{\pi}{3} - x \right) = \cos 3x .\]

 


Prove that:
cos 40° cos 80° cos 160° = \[- \frac{1}{8}\]

 


Show that:
sin (B − C) cos (A − D) + sin (C − A) cos (B − D) + sin (A − B) cos (C − D) = 0


Express each of the following as the product of sines and cosines:
sin 12x + sin 4x


Express each of the following as the product of sines and cosines:
 cos 12x - cos 4x


Prove that:
sin 38° + sin 22° = sin 82°


Prove that:
 sin 23° + sin 37° = cos 7°


Prove that:

\[\sin 65^\circ + \cos 65^\circ = \sqrt{2} \cos 20^\circ\]

Prove that:
sin 47° + cos 77° = cos 17°


Prove that:
cos 3A + cos 5A + cos 7A + cos 15A = 4 cos 4A cos 5A cos 6A


Prove that: 
cos A + cos 3A + cos 5A + cos 7A = 4 cos A cos 2A cos 4A


Prove that:
sin 3A + sin 2A − sin A = 4 sin A cos \[\frac{A}{2}\] \[\frac{3A}{2}\]

 


Prove that:

\[\frac{\sin 9A - \sin 7A}{\cos 7A - \cos 9A} = \cot 8A\]

Prove that:

\[\frac{\sin A - \sin B}{\cos A + \cos B} = \tan\frac{A - B}{2}\]

Prove that:

\[\frac{\cos 3A + 2 \cos 5A + \cos 7A}{\cos A + 2 \cos 3A + \cos 5A} = \frac{\cos 5A}{\cos 3A}\]

Prove that:

\[\frac{\sin A + \sin 3A + \sin 5A}{\cos A + \cos 3A + \cos 5A} = \tan 3A\]

 


Prove that:

\[\frac{\sin 5A \cos 2A - \sin 6A \cos A}{\sin A \sin 2A - \cos 2A \cos 3A} = \tan A\]

Prove that:

\[\frac{\sin 11A \sin A + \sin 7A \sin 3A}{\cos 11A \sin A + \cos 7A \sin 3A} = \tan 8A\]

Prove that:

\[\frac{\sin A \sin 2A + \sin 3A \sin 6A}{\sin A \cos 2A + \sin 3A \cos 6A} = \tan 5A\]

If cosec A + sec A = cosec B + sec B, prove that tan A tan B = \[\cot\frac{A + B}{2}\].


\[\text{ If }\frac{\cos (A - B)}{\cos (A + B)} + \frac{\cos (C + D)}{\cos (C - D)} = 0, \text {Prove that }\tan A \tan B \tan C \tan D = - 1\]

 


Write the value of \[\frac{\sin A + \sin 3A}{\cos A + \cos 3A}\]


If sin α + sin β = a and cos α − cos β = b, then tan \[\frac{\alpha - \beta}{2}\]=


The value of sin 50° − sin 70° + sin 10° is equal to


sin 47° + sin 61° − sin 11° − sin 25° is equal to


If sin (B + C − A), sin (C + A − B), sin (A + B − C) are in A.P., then cot A, cot B and cot Care in


If sin x + sin y = \[\sqrt{3}\] (cos y − cos x), then sin 3x + sin 3y =

 


Prove that:

cos 20° cos 40° cos 80° = `1/8`


Prove that:

`(cos 7"A" +cos 5"A")/(sin 7"A" −sin 5"A")` = cot A


If cosec A + sec A = cosec B + sec B prove that cot`(("A + B"))/2` = tan A tan B.


If tan θ = `1/sqrt5` and θ lies in the first quadrant then cos θ is:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×