Advertisements
Advertisements
प्रश्न
Show that:
sin A sin (B − C) + sin B sin (C − A) + sin C sin (A − B) = 0
उत्तर
Consider LHS:
\[\sin A \sin \left( B - C \right) + \sin B \sin \left( C - A \right) + \sin C \sin \left( A - B \right)\]
\[ = \frac{1}{2}\left[ 2\sin A \sin \left( B - C \right) \right] + \frac{1}{2}\left[ 2\sin B \sin \left( C - A \right) \right] + \frac{1}{2}\left[ 2\sin C \sin \left( A - B \right) \right]\]
\[ = \frac{1}{2}\left[ \cos \left\{ A - \left( B - C \right) \right\} - \cos \left\{ A + \left( B - C \right) \right\} \right] + \frac{1}{2}\left[ \cos \left\{ B - \left( C - A \right) \right\} - \cos \left\{ B + \left( C - A \right) \right\} \right] + \frac{1}{2}\left[ \cos \left\{ C - \left( A - B \right) \right\} - \cos \left\{ C + \left( A - B \right) \right\} \right]\]
\[ = \frac{1}{2}\left[ \cos \left( A - B + C \right) - \cos \left( A + B - C \right) \right] + \frac{1}{2}\left[ \cos \left( B - C + A \right) - \cos\left( B + C - A \right) \right] + \frac{1}{2}\left[ \cos\left( C - A + B \right) - \cos\left( C + A - B \right) \right]\]
\[ = \frac{1}{2}\cos\left( A - B + C \right) - \frac{1}{2}\cos \left( A + B - C \right) + \frac{1}{2}\cos \left( B - C + A \right) - \frac{1}{2}\cos \left( B + C - A \right) + \frac{1}{2}\cos \left( C - A + B \right) - \frac{1}{2}\cos\left( C + A - B \right)\]
\[ = \frac{1}{2}\cos\left( A - B + C \right) - \frac{1}{2}\cos\left( A + B - C \right) + \frac{1}{2}\cos\left( A + B - C \right) - \frac{1}{2}\cos\left( B + C - A \right) + \frac{1}{2}\cos\left( B + C - A \right) - \frac{1}{2}\cos\left( A - B + C \right)\]
\[ = 0\]
= RHS
APPEARS IN
संबंधित प्रश्न
Show that :
Prove that:
cos 40° cos 80° cos 160° = \[- \frac{1}{8}\]
Show that:
sin (B − C) cos (A − D) + sin (C − A) cos (B − D) + sin (A − B) cos (C − D) = 0
Express each of the following as the product of sines and cosines:
sin 12x + sin 4x
Express each of the following as the product of sines and cosines:
cos 12x - cos 4x
Prove that:
sin 38° + sin 22° = sin 82°
Prove that:
sin 23° + sin 37° = cos 7°
Prove that:
Prove that:
sin 47° + cos 77° = cos 17°
Prove that:
cos 3A + cos 5A + cos 7A + cos 15A = 4 cos 4A cos 5A cos 6A
Prove that:
cos A + cos 3A + cos 5A + cos 7A = 4 cos A cos 2A cos 4A
Prove that:
sin 3A + sin 2A − sin A = 4 sin A cos \[\frac{A}{2}\] \[\frac{3A}{2}\]
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
If cosec A + sec A = cosec B + sec B, prove that tan A tan B = \[\cot\frac{A + B}{2}\].
Write the value of \[\frac{\sin A + \sin 3A}{\cos A + \cos 3A}\]
If sin α + sin β = a and cos α − cos β = b, then tan \[\frac{\alpha - \beta}{2}\]=
The value of sin 50° − sin 70° + sin 10° is equal to
sin 47° + sin 61° − sin 11° − sin 25° is equal to
If sin (B + C − A), sin (C + A − B), sin (A + B − C) are in A.P., then cot A, cot B and cot Care in
If sin x + sin y = \[\sqrt{3}\] (cos y − cos x), then sin 3x + sin 3y =
Prove that:
cos 20° cos 40° cos 80° = `1/8`
Prove that:
`(cos 7"A" +cos 5"A")/(sin 7"A" −sin 5"A")` = cot A
If cosec A + sec A = cosec B + sec B prove that cot`(("A + B"))/2` = tan A tan B.
If tan θ = `1/sqrt5` and θ lies in the first quadrant then cos θ is: