Advertisements
Advertisements
प्रश्न
Prove that:
cos 20° cos 40° cos 80° = `1/8`
उत्तर
cos 20° cos 40° cos 80°
= `((2 sin 20^circ)/(2 sin 20^circ))` cos 20° cos 40° cos 80°
[multiply and divide by 2 sin 20°]
`= ((2 sin 20^circ cos 20^circ) cos 40^circ cos 80^circ)/(2 sin 20^circ)`
`= (sin (2 xx 20^circ) cos 40^circ cos 80^circ)/(2 sin 20^circ)`
= `(sin 40^circ cos 40^circ cos 80^circ)/(2 sin 20^circ)`
(Multiply and divide by 2)
`= 1/2 xx ((2 sin 40^circ cos 40^circ))/(2 sin 20^circ) cos 80^circ`
`= 1/2 xx ((sin 2 xx 40^circ)cos 80^circ)/(2 sin 20^circ)`
`= 1/2 xx (sin 80^circ cos 80^circ)/(2 sin 20^circ)`
`= 1/2 xx 1/2 ((2 sin 80^circ cos 80^circ))/(2 sin 20^circ)`
`= 1/8 xx (sin 160^circ)/(sin 20^circ)`
`= 1/8 xx sin (180^circ - 20^circ)/(sin 20^circ)`
`= 1/8 xx sin 20^circ/sin 20^circ` ...[∵ sin(180° – θ) = sin θ]
`= 1/8 xx 1 = 1/8`
APPEARS IN
संबंधित प्रश्न
If α + β = \[\frac{\pi}{2}\], show that the maximum value of cos α cos β is \[\frac{1}{2}\].
Prove that:
sin 38° + sin 22° = sin 82°
Prove that:
sin 23° + sin 37° = cos 7°
Prove that:
sin 105° + cos 105° = cos 45°
Prove that:
Prove that:
If (cos α + cos β)2 + (sin α + sin β)2 = \[\lambda \cos^2 \left( \frac{\alpha - \beta}{2} \right)\], write the value of λ.
If sin A + sin B = α and cos A + cos B = β, then write the value of tan \[\left( \frac{A + B}{2} \right)\].
If cos (A + B) sin (C − D) = cos (A − B) sin (C + D), then write the value of tan A tan B tan C.
Express the following as the sum or difference of sine or cosine:
`sin "A"/8 sin (3"A")/8`