Advertisements
Advertisements
प्रश्न
Prove that:
cos 20° cos 40° cos 80° = `1/8`
उत्तर
cos 20° cos 40° cos 80°
= `((2 sin 20^circ)/(2 sin 20^circ))` cos 20° cos 40° cos 80°
[multiply and divide by 2 sin 20°]
`= ((2 sin 20^circ cos 20^circ) cos 40^circ cos 80^circ)/(2 sin 20^circ)`
`= (sin (2 xx 20^circ) cos 40^circ cos 80^circ)/(2 sin 20^circ)`
= `(sin 40^circ cos 40^circ cos 80^circ)/(2 sin 20^circ)`
(Multiply and divide by 2)
`= 1/2 xx ((2 sin 40^circ cos 40^circ))/(2 sin 20^circ) cos 80^circ`
`= 1/2 xx ((sin 2 xx 40^circ)cos 80^circ)/(2 sin 20^circ)`
`= 1/2 xx (sin 80^circ cos 80^circ)/(2 sin 20^circ)`
`= 1/2 xx 1/2 ((2 sin 80^circ cos 80^circ))/(2 sin 20^circ)`
`= 1/8 xx (sin 160^circ)/(sin 20^circ)`
`= 1/8 xx sin (180^circ - 20^circ)/(sin 20^circ)`
`= 1/8 xx sin 20^circ/sin 20^circ` ...[∵ sin(180° – θ) = sin θ]
`= 1/8 xx 1 = 1/8`
APPEARS IN
संबंधित प्रश्न
Show that:
sin A sin (B − C) + sin B sin (C − A) + sin C sin (A − B) = 0
Show that:
sin (B − C) cos (A − D) + sin (C − A) cos (B − D) + sin (A − B) cos (C − D) = 0
Express each of the following as the product of sines and cosines:
sin 12x + sin 4x
Prove that:
cos 55° + cos 65° + cos 175° = 0
Prove that:
cos 3A + cos 5A + cos 7A + cos 15A = 4 cos 4A cos 5A cos 6A
If y sin ϕ = x sin (2θ + ϕ), prove that (x + y) cot (θ + ϕ) = (y − x) cot θ.
sin 47° + sin 61° − sin 11° − sin 25° is equal to
Prove that:
`(cos 2"A" - cos 3"A")/(sin "2A" + sin "3A") = tan "A"/2`
If cosec A + sec A = cosec B + sec B prove that cot`(("A + B"))/2` = tan A tan B.
If secx cos5x + 1 = 0, where 0 < x ≤ `pi/2`, then find the value of x.