Advertisements
Advertisements
प्रश्न
Prove that:
`(cos 2"A" - cos 3"A")/(sin "2A" + sin "3A") = tan "A"/2`
उत्तर
LHS = `(cos 2"A" - cos 3"A")/(sin "2A" + sin "3A")` ...`[∵ cos "C" - cos "D" = - 2 sin (("C + D")/2) sin (("C - D")/2)]`
`= (- 2 sin ((2"A" + 3"A")/2) sin((2"A" - 3"A")/2))/(2 sin ((2"A" + 3"A")/2) cos((2"A" - 3"A")/2))` ...`[∵ sin "C" + sin "D" = 2 sin (("C + D")/2) cos (("C - D")/2)]`
`= (- 2 sin((5"A")/2) sin ((- "A")/2))/(2 sin ((5"A")/2) cos ((- "A")/2))`
`= (2 sin ((5"A")/2) sin ("A"/2))/(2 sin ((5"A")/2) cos (("A")/2))`
= tan `("A"/2)` = RHS
APPEARS IN
संबंधित प्रश्न
Prove that:
tan 20° tan 40° tan 60° tan 80° = 3
Prove that:
sin 10° sin 50° sin 60° sin 70° = \[\frac{\sqrt{3}}{16}\]
Prove that:
sin 20° sin 40° sin 60° sin 80° = \[\frac{3}{16}\]
Prove that
\[\tan x \tan \left( \frac{\pi}{3} - x \right) \tan \left( \frac{\pi}{3} + x \right) = \tan 3x\]
Express each of the following as the product of sines and cosines:
sin 12x + sin 4x
Prove that:
cos A + cos 3A + cos 5A + cos 7A = 4 cos A cos 2A cos 4A
Prove that:
If \[m \sin\theta = n \sin\left( \theta + 2\alpha \right)\], prove that \[\tan\left( \theta + \alpha \right) \cot\alpha = \frac{m + n}{m - n}\]
The value of sin 78° − sin 66° − sin 42° + sin 60° is ______.
If \[\tan\alpha = \frac{x}{x + 1}\] and