Advertisements
Advertisements
प्रश्न
Prove that:
`(cos 2"A" - cos 3"A")/(sin "2A" + sin "3A") = tan "A"/2`
उत्तर
LHS = `(cos 2"A" - cos 3"A")/(sin "2A" + sin "3A")` ...`[∵ cos "C" - cos "D" = - 2 sin (("C + D")/2) sin (("C - D")/2)]`
`= (- 2 sin ((2"A" + 3"A")/2) sin((2"A" - 3"A")/2))/(2 sin ((2"A" + 3"A")/2) cos((2"A" - 3"A")/2))` ...`[∵ sin "C" + sin "D" = 2 sin (("C + D")/2) cos (("C - D")/2)]`
`= (- 2 sin((5"A")/2) sin ((- "A")/2))/(2 sin ((5"A")/2) cos ((- "A")/2))`
`= (2 sin ((5"A")/2) sin ("A"/2))/(2 sin ((5"A")/2) cos (("A")/2))`
= tan `("A"/2)` = RHS
APPEARS IN
संबंधित प्रश्न
Prove that:
Show that :
Express each of the following as the product of sines and cosines:
cos 12x + cos 8x
Prove that:
cos 3A + cos 5A + cos 7A + cos 15A = 4 cos 4A cos 5A cos 6A
If (cos α + cos β)2 + (sin α + sin β)2 = \[\lambda \cos^2 \left( \frac{\alpha - \beta}{2} \right)\], write the value of λ.
If cos A = m cos B, then write the value of \[\cot\frac{A + B}{2} \cot\frac{A - B}{2}\].
Write the value of \[\sin\frac{\pi}{15}\sin\frac{4\pi}{15}\sin\frac{3\pi}{10}\]
If sin α + sin β = a and cos α − cos β = b, then tan \[\frac{\alpha - \beta}{2}\]=
If \[\tan\alpha = \frac{x}{x + 1}\] and