Advertisements
Advertisements
प्रश्न
उत्तर
Given:
sin 2A = λ sin 2B
\[\Rightarrow \frac{\sin2A}{\sin2B} = \lambda\]
\[\Rightarrow \frac{\sin2A + \sin2B}{\sin2A - \sin2B} = \frac{\lambda + 1}{\lambda - 1}\]
\[ \Rightarrow \frac{2\sin\left( \frac{2A + 2B}{2} \right)\cos\left( \frac{2A - 2B}{2} \right)}{2\sin\left( \frac{2A - 2B}{2} \right)\cos\left( \frac{2A + 2B}{2} \right)} = \frac{\lambda + 1}{\lambda - 1} \left[ \because \sin A + \sin B = 2\sin\left( \frac{A + B}{2} \right)\cos\left( \frac{A - B}{2} \right) and \sin A - \sin B = 2\sin\left( \frac{A - B}{2} \right)\cos\left( \frac{A + B}{2} \right) \right]\]
\[ \Rightarrow \frac{\sin\left( A + B \right)\cos\left( A - B \right)}{\sin\left( A - B \right)\cos\left( A + B \right)} = \frac{\lambda + 1}{\lambda - 1}\]
\[ \Rightarrow \tan\left( A + B \right)\cot\left( A - B \right)=\frac{\lambda + 1}{\lambda - 1}\]
\[\Rightarrow\frac{\tan\left( A + B \right)}{\tan\left( A - B \right)}=\frac{\lambda + 1}{\lambda - 1}\]
Hence proved.
APPEARS IN
संबंधित प्रश्न
Show that :
Prove that:
cos 10° cos 30° cos 50° cos 70° = \[\frac{3}{16}\]
Prove that:
cos 40° cos 80° cos 160° = \[- \frac{1}{8}\]
Prove that:
tan 20° tan 40° tan 60° tan 80° = 3
Express each of the following as the product of sines and cosines:
sin 12x + sin 4x
Express each of the following as the product of sines and cosines:
cos 12x - cos 4x
Prove that:
sin 40° + sin 20° = cos 10°
Prove that:
cos 55° + cos 65° + cos 175° = 0
Prove that:
sin 50° − sin 70° + sin 10° = 0
Prove that:
cos 80° + cos 40° − cos 20° = 0
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
cos 3A + cos 5A + cos 7A + cos 15A = 4 cos 4A cos 5A cos 6A
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
cos (A + B + C) + cos (A − B + C) + cos (A + B − C) + cos (− A + B + C) = 4 cos A cos Bcos C
If cos (α + β) sin (γ + δ) = cos (α − β) sin (γ − δ), prove that cot α cot β cot γ = cot δ
If cos A = m cos B, then write the value of \[\cot\frac{A + B}{2} \cot\frac{A - B}{2}\].
Write the value of the expression \[\frac{1 - 4 \sin 10^\circ \sin 70^\circ}{2 \sin 10^\circ}\]
Write the value of \[\sin\frac{\pi}{15}\sin\frac{4\pi}{15}\sin\frac{3\pi}{10}\]
If sin 2A = λ sin 2B, then write the value of \[\frac{\lambda + 1}{\lambda - 1}\]
Write the value of \[\frac{\sin A + \sin 3A}{\cos A + \cos 3A}\]
If sin 2 θ + sin 2 ϕ = \[\frac{1}{2}\] and cos 2 θ + cos 2 ϕ = \[\frac{3}{2}\], then cos2 (θ − ϕ) =
Prove that:
cos 20° cos 40° cos 80° = `1/8`
Prove that:
`(cos 7"A" +cos 5"A")/(sin 7"A" −sin 5"A")` = cot A
Prove that cos 20° cos 40° cos 60° cos 80° = `3/16`.
Evaluate-
cos 20° + cos 100° + cos 140°
Evaluate:
sin 50° – sin 70° + sin 10°
If sin(y + z – x), sin(z + x – y), sin(x + y – z) are in A.P, then prove that tan x, tan y and tan z are in A.P.
Find the value of tan22°30′. `["Hint:" "Let" θ = 45°, "use" tan theta/2 = (sin theta/2)/(cos theta/2) = (2sin theta/2 cos theta/2)/(2cos^2 theta/2) = sintheta/(1 + costheta)]`