Advertisements
Advertisements
प्रश्न
Evaluate:
sin 50° – sin 70° + sin 10°
उत्तर
LHS = (sin 50° – sin 70°) + sin 10°
= 2 cos `((50^circ + 70^circ)/2) sin ((50^circ - 70^circ)/2)` + sin 10°
`[∵ sin "C" - sin "D" = 2 cos (("C + D")/2) sin (("C - D")/2)]`
= 2 cos 60° sin(-10°) + sin 10°
`= 2 xx 1/2` (-sin 10°) + sin 10° ...[∵ sin(-θ) = -sin θ]
= -sin 10° + sin 10°
= 0
= RHS
APPEARS IN
संबंधित प्रश्न
Prove that:
sin 20° sin 40° sin 80° = \[\frac{\sqrt{3}}{8}\]
Prove that:
sin 10° sin 50° sin 60° sin 70° = \[\frac{\sqrt{3}}{16}\]
Prove that:
sin 23° + sin 37° = cos 7°
Prove that:
cos 80° + cos 40° − cos 20° = 0
Prove that:
Write the value of \[\sin\frac{\pi}{15}\sin\frac{4\pi}{15}\sin\frac{3\pi}{10}\]
The value of sin 50° − sin 70° + sin 10° is equal to
Express the following as the sum or difference of sine or cosine:
`cos (7"A")/3 sin (5"A")/3`
Prove that:
(cos α – cos β)2 + (sin α – sin β)2 = 4 sin2 `((alpha - beta)/2)`
Prove that:
sin A sin(60° + A) sin(60° – A) = `1/4` sin 3A