Advertisements
Advertisements
प्रश्न
Evaluate-
cos 20° + cos 100° + cos 140°
उत्तर
LHS = (cos 20° + cos 100°) + cos 140°
= 2 cos `((20^circ + 100^circ)/2) cos ((20^circ - 100^circ)/2)` + cos 140°
`[∵ cos "C" + cos "D" = 2 cos (("C + D")/2) cos (("C + D")/2)]`
= 2 cos 60° cos(-40°) + cos 140°
`= 2 xx 1/2 × cos(-40°) + cos(180° – 140°)`
`[∵ cos(-θ) = cos θ, cos 60° = 1/2]`
= cos 40° – cos 40°
= 0
Hence Proved.
APPEARS IN
संबंधित प्रश्न
Prove that:
cos 55° + cos 65° + cos 175° = 0
Prove that:
Prove that:
`sin A + sin 2A + sin 4A + sin 5A = 4 cos (A/2) cos((3A)/2)sin3A`
Prove that:
If cos A = m cos B, then write the value of \[\cot\frac{A + B}{2} \cot\frac{A - B}{2}\].
If sin 2 θ + sin 2 ϕ = \[\frac{1}{2}\] and cos 2 θ + cos 2 ϕ = \[\frac{3}{2}\], then cos2 (θ − ϕ) =
The value of cos 52° + cos 68° + cos 172° is
If sin α + sin β = a and cos α − cos β = b, then tan \[\frac{\alpha - \beta}{2}\]=
Prove that:
sin (A – B) sin C + sin (B – C) sin A + sin(C – A) sin B = 0