Advertisements
Advertisements
Question
Evaluate-
cos 20° + cos 100° + cos 140°
Solution
LHS = (cos 20° + cos 100°) + cos 140°
= 2 cos `((20^circ + 100^circ)/2) cos ((20^circ - 100^circ)/2)` + cos 140°
`[∵ cos "C" + cos "D" = 2 cos (("C + D")/2) cos (("C + D")/2)]`
= 2 cos 60° cos(-40°) + cos 140°
`= 2 xx 1/2 × cos(-40°) + cos(180° – 140°)`
`[∵ cos(-θ) = cos θ, cos 60° = 1/2]`
= cos 40° – cos 40°
= 0
Hence Proved.
APPEARS IN
RELATED QUESTIONS
Prove that:
Prove that:
cos 20° + cos 100° + cos 140° = 0
Prove that:
Prove that:
Prove that:
If sin A + sin B = α and cos A + cos B = β, then write the value of tan \[\left( \frac{A + B}{2} \right)\].
The value of cos 52° + cos 68° + cos 172° is
The value of sin 78° − sin 66° − sin 42° + sin 60° is ______.
Prove that:
sin A sin(60° + A) sin(60° – A) = `1/4` sin 3A
If secx cos5x + 1 = 0, where 0 < x ≤ `pi/2`, then find the value of x.