Advertisements
Advertisements
प्रश्न
Evaluate-
cos 20° + cos 100° + cos 140°
उत्तर
LHS = (cos 20° + cos 100°) + cos 140°
= 2 cos `((20^circ + 100^circ)/2) cos ((20^circ - 100^circ)/2)` + cos 140°
`[∵ cos "C" + cos "D" = 2 cos (("C + D")/2) cos (("C + D")/2)]`
= 2 cos 60° cos(-40°) + cos 140°
`= 2 xx 1/2 × cos(-40°) + cos(180° – 140°)`
`[∵ cos(-θ) = cos θ, cos 60° = 1/2]`
= cos 40° – cos 40°
= 0
Hence Proved.
APPEARS IN
संबंधित प्रश्न
Prove that:
cos 100° + cos 20° = cos 40°
Prove that:
sin 105° + cos 105° = cos 45°
Prove that:
cos 20° + cos 100° + cos 140° = 0
Prove that:
Prove that:
Write the value of sin \[\frac{\pi}{12}\] sin \[\frac{5\pi}{12}\].
Write the value of \[\sin\frac{\pi}{15}\sin\frac{4\pi}{15}\sin\frac{3\pi}{10}\]
The value of sin 78° − sin 66° − sin 42° + sin 60° is ______.
Express the following as the product of sine and cosine.
cos 2A + cos 4A