मराठी

If Cos ( a − B ) Cos ( a + B ) + Cos ( C + D ) Cos ( C − D ) = 0 , Prove that Tan a Tan B Tan C Tan D = − 1 - Mathematics

Advertisements
Advertisements

प्रश्न

\[\text{ If }\frac{\cos (A - B)}{\cos (A + B)} + \frac{\cos (C + D)}{\cos (C - D)} = 0, \text {Prove that }\tan A \tan B \tan C \tan D = - 1\]

 

बेरीज

उत्तर

We have, 
\[\frac{\cos \left( A - B \right)}{\cos \left( A + B \right)} + \frac{\cos \left( C + D \right)}{\cos \left( C - D \right)} = 0\]
\[ \Rightarrow \frac{\cos \left( A - B \right) \cos \left( C - D \right) + \cos \left( C + D \right) \cos \left( A + B \right)}{\cos \left( A + B \right) \cos \left( C - D \right)} = 0\]
\[ \Rightarrow \cos \left( A - B \right) \cos \left( C - D \right) + \cos \left( C + D \right) \cos \left( A + B \right) = 0\]
\[ \Rightarrow \cos \left( A - B \right) \cos \left( C - D \right) = - \cos \left( C + D \right) \cos \left( A + B \right)\]
\[ \Rightarrow \left[ \cos A \cos B + \sin A \sin B \right]\left[ \cos C \cos D + \sin C \sin D \right] = - \left[ \cos C \cos D - \sin C \sin D \right]\left[ \cos A \cos B - \sin A \sin B \right]\]
\[\text{ Dividing both sides by }\cos A \cos B \cos C \cos D \text{ we get, }\]
\[\frac{\left[ \cos A \cos B + \sin A\sin B \right]\left[ \cos C\cos D + \sin C\sin D \right]}{\cos A\cos B\cos C\cos D} = - \frac{\left[ \cos C \cos D - \sin C\sin D \right]\left[ \cos A\cos B - \sin A\sin B \right]}{\cos A\cos B\cos C\cos D}\]
\[ \Rightarrow \frac{\left[ \cos A \cos B + \sin A\sin B \right]}{\cos A\cos B} \times \frac{\left[ \cos C\cos D + \sin C\sin D \right]}{\cos C\cos D} = - \frac{\left[ \cos C \cos D - \sin C\sin D \right]}{\cos C\cos D} \times \frac{\left[ \sin C\cos A\cos B - \sin A\sin B \right]}{\cos A\cos B}\]
\[ \Rightarrow \left[ 1 + \tan A\tan B \right]\left[ 1 + \tan C\tan D \right] = \left[ \tan C\tan D - 1 \right]\left[ 1 - \tan A\tan B \right]\]
\[ \Rightarrow 1 + \tan C\tan D + \tan A\tan B + \tan A\tan B\tan C\tan D = \tan C\tan D - \tan A\tan B\tan C\tan D + \tan A\tan B\tan D - 1 + \tan A\tan B\]
\[ \Rightarrow 2\tan A\tan B\tan C\tan D = - 2\]
\[ \Rightarrow \tan A\tan B\tan C\tan D = - 1\]
Hence proved. 

shaalaa.com
Transformation Formulae
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Transformation formulae - Exercise 8.2 [पृष्ठ १९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 8 Transformation formulae
Exercise 8.2 | Q 14 | पृष्ठ १९

संबंधित प्रश्‍न

Prove that: 

\[2\sin\frac{5\pi}{12}\cos\frac{\pi}{12} = \frac{\sqrt{3} + 2}{2}\]

Prove that:
cos 10° cos 30° cos 50° cos 70° = \[\frac{3}{16}\]

 


Prove that:
 sin 20° sin 40° sin 80° = \[\frac{\sqrt{3}}{8}\]

 


Prove that:
 cos 100° + cos 20° = cos 40°


Prove that:
sin 50° + sin 10° = cos 20°


Prove that:
sin 40° + sin 20° = cos 10°


Prove that:

\[\cos\frac{\pi}{12} - \sin\frac{\pi}{12} = \frac{1}{\sqrt{2}}\]

 


Prove that:

sin 80° − cos 70° = cos 50°

Prove that:
sin 47° + cos 77° = cos 17°


Prove that:
\[\sin\frac{x}{2}\sin\frac{7x}{2} + \sin\frac{3x}{2}\sin\frac{11x}{2} = \sin 2x \sin 5x .\]

 


Prove that:

\[\frac{\sin A + \sin B}{\sin A - \sin B} = \tan \left( \frac{A + B}{2} \right) \cot \left( \frac{A - B}{2} \right)\]

Prove that:

\[\frac{\cos 4A + \cos 3A + \cos 2A}{\sin 4A + \sin 3A + \sin 2A} = \cot 3A\]

 


Prove that:

\[\frac{\sin 3A + \sin 5A + \sin 7A + \sin 9A}{\cos 3A + \cos 5A + \cos 7A + \cos 9A} = \tan 6A\]

Prove that:

\[\frac{\sin 5A \cos 2A - \sin 6A \cos A}{\sin A \sin 2A - \cos 2A \cos 3A} = \tan A\]

Prove that:

\[\frac{\sin 11A \sin A + \sin 7A \sin 3A}{\cos 11A \sin A + \cos 7A \sin 3A} = \tan 8A\]

Prove that:

\[\frac{\sin 3A \cos 4A - \sin A \cos 2A}{\sin 4A \sin A + \cos 6A \cos A} = \tan 2A\]

Prove that:
cos (A + B + C) + cos (A − B + C) + cos (A + B − C) + cos (− A + B + C) = 4 cos A cos Bcos C


If cosec A + sec A = cosec B + sec B, prove that tan A tan B = \[\cot\frac{A + B}{2}\].


Prove that:

\[\frac{\cos (A + B + C) + \cos ( - A + B + C) + \cos (A - B + C) + \cos (A + B - C)}{\sin (A + B + C) + \sin ( - A + B + C) + \sin (A - B + C) - \sin (A + B - C)} = \cot C\]

If y sin ϕ = x sin (2θ + ϕ), prove that (x + y) cot (θ + ϕ) = (y − x) cot θ.

 

If \[x \cos\theta = y \cos\left( \theta + \frac{2\pi}{3} \right) = z \cos\left( \theta + \frac{4\pi}{3} \right)\], prove that \[xy + yz + zx = 0\]

 

 


If sin A + sin B = α and cos A + cos B = β, then write the value of tan \[\left( \frac{A + B}{2} \right)\].

 

Write the value of \[\frac{\sin A + \sin 3A}{\cos A + \cos 3A}\]


cos 40° + cos 80° + cos 160° + cos 240° =


cos 35° + cos 85° + cos 155° =


If \[\tan\alpha = \frac{x}{x + 1}\] and 

\[\tan\beta = \frac{1}{2x + 1}\], then
\[\tan\beta = \frac{1}{2x + 1}\] is equal to

 


Express the following as the product of sine and cosine.

sin A + sin 2A


Express the following as the product of sine and cosine.

sin 6θ – sin 2θ


Express the following as the product of sine and cosine.

cos 2θ – cos θ


Prove that:

cos 20° cos 40° cos 80° = `1/8`


Prove that:

(cos α – cos β)2 + (sin α – sin β)2 = 4 sin2 `((alpha - beta)/2)`


Prove that:

2 cos `pi/13` cos \[\frac{9\pi}{13} + \text{cos} \frac{3\pi}{13} + \text{cos} \frac{5\pi}{13}\] = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×