English

If Cos ( a − B ) Cos ( a + B ) + Cos ( C + D ) Cos ( C − D ) = 0 , Prove that Tan a Tan B Tan C Tan D = − 1 - Mathematics

Advertisements
Advertisements

Question

\[\text{ If }\frac{\cos (A - B)}{\cos (A + B)} + \frac{\cos (C + D)}{\cos (C - D)} = 0, \text {Prove that }\tan A \tan B \tan C \tan D = - 1\]

 

Sum

Solution

We have, 
\[\frac{\cos \left( A - B \right)}{\cos \left( A + B \right)} + \frac{\cos \left( C + D \right)}{\cos \left( C - D \right)} = 0\]
\[ \Rightarrow \frac{\cos \left( A - B \right) \cos \left( C - D \right) + \cos \left( C + D \right) \cos \left( A + B \right)}{\cos \left( A + B \right) \cos \left( C - D \right)} = 0\]
\[ \Rightarrow \cos \left( A - B \right) \cos \left( C - D \right) + \cos \left( C + D \right) \cos \left( A + B \right) = 0\]
\[ \Rightarrow \cos \left( A - B \right) \cos \left( C - D \right) = - \cos \left( C + D \right) \cos \left( A + B \right)\]
\[ \Rightarrow \left[ \cos A \cos B + \sin A \sin B \right]\left[ \cos C \cos D + \sin C \sin D \right] = - \left[ \cos C \cos D - \sin C \sin D \right]\left[ \cos A \cos B - \sin A \sin B \right]\]
\[\text{ Dividing both sides by }\cos A \cos B \cos C \cos D \text{ we get, }\]
\[\frac{\left[ \cos A \cos B + \sin A\sin B \right]\left[ \cos C\cos D + \sin C\sin D \right]}{\cos A\cos B\cos C\cos D} = - \frac{\left[ \cos C \cos D - \sin C\sin D \right]\left[ \cos A\cos B - \sin A\sin B \right]}{\cos A\cos B\cos C\cos D}\]
\[ \Rightarrow \frac{\left[ \cos A \cos B + \sin A\sin B \right]}{\cos A\cos B} \times \frac{\left[ \cos C\cos D + \sin C\sin D \right]}{\cos C\cos D} = - \frac{\left[ \cos C \cos D - \sin C\sin D \right]}{\cos C\cos D} \times \frac{\left[ \sin C\cos A\cos B - \sin A\sin B \right]}{\cos A\cos B}\]
\[ \Rightarrow \left[ 1 + \tan A\tan B \right]\left[ 1 + \tan C\tan D \right] = \left[ \tan C\tan D - 1 \right]\left[ 1 - \tan A\tan B \right]\]
\[ \Rightarrow 1 + \tan C\tan D + \tan A\tan B + \tan A\tan B\tan C\tan D = \tan C\tan D - \tan A\tan B\tan C\tan D + \tan A\tan B\tan D - 1 + \tan A\tan B\]
\[ \Rightarrow 2\tan A\tan B\tan C\tan D = - 2\]
\[ \Rightarrow \tan A\tan B\tan C\tan D = - 1\]
Hence proved. 

shaalaa.com
Transformation Formulae
  Is there an error in this question or solution?
Chapter 8: Transformation formulae - Exercise 8.2 [Page 19]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 8 Transformation formulae
Exercise 8.2 | Q 14 | Page 19

RELATED QUESTIONS

Prove that: 

\[2\sin\frac{5\pi}{12}\cos\frac{\pi}{12} = \frac{\sqrt{3} + 2}{2}\]

Show that :

\[\sin 25^\circ \cos 115^\circ = \frac{1}{2}\left( \sin 140^\circ - 1 \right)\]

Prove that:
cos 20° cos 40° cos 80° = \[\frac{1}{8}\]

 


Prove that:
sin 10° sin 50° sin 60° sin 70° = \[\frac{\sqrt{3}}{16}\]

 


If α + β = \[\frac{\pi}{2}\], show that the maximum value of cos α cos β is \[\frac{1}{2}\].

 

 


Express each of the following as the product of sines and cosines:
sin 5x − sin x


Express each of the following as the product of sines and cosines:
sin 2x + cos 4x


Prove that:
sin 40° + sin 20° = cos 10°


Prove that:
 sin 50° − sin 70° + sin 10° = 0



Prove that:
cos 20° + cos 100° + cos 140° = 0


Prove that:

sin 51° + cos 81° = cos 21°

Prove that:

\[\cos\left( \frac{3\pi}{4} + x \right) - \cos\left( \frac{3\pi}{4} - x \right) = - \sqrt{2} \sin x\]

 


Prove that: 
cos A + cos 3A + cos 5A + cos 7A = 4 cos A cos 2A cos 4A


Prove that:
sin 3A + sin 2A − sin A = 4 sin A cos \[\frac{A}{2}\] \[\frac{3A}{2}\]

 


Prove that:

\[\frac{\sin A + \sin 3A}{\cos A - \cos 3A} = \cot A\]

 


Prove that:

\[\frac{\sin 9A - \sin 7A}{\cos 7A - \cos 9A} = \cot 8A\]

Prove that:

\[\frac{\sin A - \sin B}{\cos A + \cos B} = \tan\frac{A - B}{2}\]

Prove that:

\[\frac{\sin A + \sin B}{\sin A - \sin B} = \tan \left( \frac{A + B}{2} \right) \cot \left( \frac{A - B}{2} \right)\]

Prove that:

\[\frac{\sin A + \sin 3A + \sin 5A}{\cos A + \cos 3A + \cos 5A} = \tan 3A\]

 


Prove that:

\[\frac{\sin 5A \cos 2A - \sin 6A \cos A}{\sin A \sin 2A - \cos 2A \cos 3A} = \tan A\]

Prove that:

\[\sin \alpha + \sin \beta + \sin \gamma - \sin (\alpha + \beta + \gamma) = 4 \sin \left( \frac{\alpha + \beta}{2} \right) \sin \left( \frac{\beta + \gamma}{2} \right) \sin \left( \frac{\gamma + \alpha}{2} \right)\]

 


\[\text{ If } \cos A + \cos B = \frac{1}{2}\text{ and }\sin A + \sin B = \frac{1}{4},\text{ prove that }\tan\left( \frac{A + B}{2} \right) = \frac{1}{2} .\]

 


If \[x \cos\theta = y \cos\left( \theta + \frac{2\pi}{3} \right) = z \cos\left( \theta + \frac{4\pi}{3} \right)\], prove that \[xy + yz + zx = 0\]

 

 


If \[m \sin\theta = n \sin\left( \theta + 2\alpha \right)\], prove that \[\tan\left( \theta + \alpha \right) \cot\alpha = \frac{m + n}{m - n}\]


Write the value of sin \[\frac{\pi}{12}\] sin \[\frac{5\pi}{12}\].


If cos A = m cos B, then write the value of \[\cot\frac{A + B}{2} \cot\frac{A - B}{2}\].

 

If sin 2A = λ sin 2B, then write the value of \[\frac{\lambda + 1}{\lambda - 1}\]


If sin 2 θ + sin 2 ϕ = \[\frac{1}{2}\] and cos 2 θ + cos 2 ϕ = \[\frac{3}{2}\], then cos2 (θ − ϕ) =

 

 


The value of sin 78° − sin 66° − sin 42° + sin 60° is ______.


cos 35° + cos 85° + cos 155° =


The value of sin 50° − sin 70° + sin 10° is equal to


If sin (B + C − A), sin (C + A − B), sin (A + B − C) are in A.P., then cot A, cot B and cot Care in


If sin x + sin y = \[\sqrt{3}\] (cos y − cos x), then sin 3x + sin 3y =

 


Express the following as the product of sine and cosine.

sin 6θ – sin 2θ


Prove that:

`(cos 2"A" - cos 3"A")/(sin "2A" + sin "3A") = tan  "A"/2`


Evaluate:

sin 50° – sin 70° + sin 10°


If sin(y + z – x), sin(z + x – y), sin(x + y – z) are in A.P, then prove that tan x, tan y and tan z are in A.P.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×