Advertisements
Advertisements
Question
Solution
We have,
\[\frac{\cos \left( A - B \right)}{\cos \left( A + B \right)} + \frac{\cos \left( C + D \right)}{\cos \left( C - D \right)} = 0\]
\[ \Rightarrow \frac{\cos \left( A - B \right) \cos \left( C - D \right) + \cos \left( C + D \right) \cos \left( A + B \right)}{\cos \left( A + B \right) \cos \left( C - D \right)} = 0\]
\[ \Rightarrow \cos \left( A - B \right) \cos \left( C - D \right) + \cos \left( C + D \right) \cos \left( A + B \right) = 0\]
\[ \Rightarrow \cos \left( A - B \right) \cos \left( C - D \right) = - \cos \left( C + D \right) \cos \left( A + B \right)\]
\[ \Rightarrow \left[ \cos A \cos B + \sin A \sin B \right]\left[ \cos C \cos D + \sin C \sin D \right] = - \left[ \cos C \cos D - \sin C \sin D \right]\left[ \cos A \cos B - \sin A \sin B \right]\]
\[\text{ Dividing both sides by }\cos A \cos B \cos C \cos D \text{ we get, }\]
\[\frac{\left[ \cos A \cos B + \sin A\sin B \right]\left[ \cos C\cos D + \sin C\sin D \right]}{\cos A\cos B\cos C\cos D} = - \frac{\left[ \cos C \cos D - \sin C\sin D \right]\left[ \cos A\cos B - \sin A\sin B \right]}{\cos A\cos B\cos C\cos D}\]
\[ \Rightarrow \frac{\left[ \cos A \cos B + \sin A\sin B \right]}{\cos A\cos B} \times \frac{\left[ \cos C\cos D + \sin C\sin D \right]}{\cos C\cos D} = - \frac{\left[ \cos C \cos D - \sin C\sin D \right]}{\cos C\cos D} \times \frac{\left[ \sin C\cos A\cos B - \sin A\sin B \right]}{\cos A\cos B}\]
\[ \Rightarrow \left[ 1 + \tan A\tan B \right]\left[ 1 + \tan C\tan D \right] = \left[ \tan C\tan D - 1 \right]\left[ 1 - \tan A\tan B \right]\]
\[ \Rightarrow 1 + \tan C\tan D + \tan A\tan B + \tan A\tan B\tan C\tan D = \tan C\tan D - \tan A\tan B\tan C\tan D + \tan A\tan B\tan D - 1 + \tan A\tan B\]
\[ \Rightarrow 2\tan A\tan B\tan C\tan D = - 2\]
\[ \Rightarrow \tan A\tan B\tan C\tan D = - 1\]
Hence proved.
APPEARS IN
RELATED QUESTIONS
Prove that:
Show that :
Prove that:
cos 20° cos 40° cos 80° = \[\frac{1}{8}\]
Prove that:
sin 10° sin 50° sin 60° sin 70° = \[\frac{\sqrt{3}}{16}\]
If α + β = \[\frac{\pi}{2}\], show that the maximum value of cos α cos β is \[\frac{1}{2}\].
Express each of the following as the product of sines and cosines:
sin 5x − sin x
Express each of the following as the product of sines and cosines:
sin 2x + cos 4x
Prove that:
sin 40° + sin 20° = cos 10°
Prove that:
sin 50° − sin 70° + sin 10° = 0
Prove that:
cos 20° + cos 100° + cos 140° = 0
Prove that:
Prove that:
Prove that:
cos A + cos 3A + cos 5A + cos 7A = 4 cos A cos 2A cos 4A
Prove that:
sin 3A + sin 2A − sin A = 4 sin A cos \[\frac{A}{2}\] \[\frac{3A}{2}\]
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
If \[x \cos\theta = y \cos\left( \theta + \frac{2\pi}{3} \right) = z \cos\left( \theta + \frac{4\pi}{3} \right)\], prove that \[xy + yz + zx = 0\]
If \[m \sin\theta = n \sin\left( \theta + 2\alpha \right)\], prove that \[\tan\left( \theta + \alpha \right) \cot\alpha = \frac{m + n}{m - n}\]
Write the value of sin \[\frac{\pi}{12}\] sin \[\frac{5\pi}{12}\].
If cos A = m cos B, then write the value of \[\cot\frac{A + B}{2} \cot\frac{A - B}{2}\].
If sin 2A = λ sin 2B, then write the value of \[\frac{\lambda + 1}{\lambda - 1}\]
If sin 2 θ + sin 2 ϕ = \[\frac{1}{2}\] and cos 2 θ + cos 2 ϕ = \[\frac{3}{2}\], then cos2 (θ − ϕ) =
The value of sin 78° − sin 66° − sin 42° + sin 60° is ______.
cos 35° + cos 85° + cos 155° =
The value of sin 50° − sin 70° + sin 10° is equal to
If sin (B + C − A), sin (C + A − B), sin (A + B − C) are in A.P., then cot A, cot B and cot Care in
If sin x + sin y = \[\sqrt{3}\] (cos y − cos x), then sin 3x + sin 3y =
Express the following as the product of sine and cosine.
sin 6θ – sin 2θ
Prove that:
`(cos 2"A" - cos 3"A")/(sin "2A" + sin "3A") = tan "A"/2`
Evaluate:
sin 50° – sin 70° + sin 10°
If sin(y + z – x), sin(z + x – y), sin(x + y – z) are in A.P, then prove that tan x, tan y and tan z are in A.P.