Advertisements
Advertisements
Question
If cos A = m cos B, then write the value of \[\cot\frac{A + B}{2} \cot\frac{A - B}{2}\].
Solution
Given:
\[\cos A = m\cos B\]
\[ \Rightarrow \frac{\cos A}{\cos B} = \frac{m}{1}\]
\[ \Rightarrow \frac{\cos A + \cos B}{\cos A - \cos B} = \frac{m + 1}{m - 1}\]
\[ \Rightarrow \frac{2\cos\left( \frac{A + B}{2} \right)\cos\left( \frac{A - B}{2} \right)}{- 2\sin\left( \frac{A + B}{2} \right)\sin\left( \frac{A - B}{2} \right)} = \frac{m + 1}{m - 1} \left[ \because \cos A + \cos B = 2\cos\left( \frac{A - B}{2} \right)\cos\left( \frac{A + B}{2} \right)\text{ and }\cos A - \cos B = - 2\sin\left( \frac{A + B}{2} \right)\cos\left( \frac{A - B}{2} \right) \right]\]
\[ \Rightarrow \frac{\cos\left( \frac{A - B}{2} \right)\cos\left( \frac{A + B}{2} \right)}{- \sin\left( \frac{A + B}{2} \right)\sin\left( \frac{A - B}{2} \right)} = \frac{m + 1}{m - 1} \]
\[ \Rightarrow -\cot\left( \frac{A + B}{2} \right)\cot\left( \frac{A - B}{2} \right)=\frac{m + 1}{m - 1}\]
APPEARS IN
RELATED QUESTIONS
Prove that:
Prove that:
Prove that:
cos 40° cos 80° cos 160° = \[- \frac{1}{8}\]
Prove that:
sin 20° sin 40° sin 80° = \[\frac{\sqrt{3}}{8}\]
Prove that:
tan 20° tan 40° tan 60° tan 80° = 3
Express each of the following as the product of sines and cosines:
cos 12x + cos 8x
Prove that:
cos 100° + cos 20° = cos 40°
Prove that:
\[\sin\frac{5\pi}{18} - \cos\frac{4\pi}{9} = \sqrt{3} \sin\frac{\pi}{9}\]
Prove that:
cos 3A + cos 5A + cos 7A + cos 15A = 4 cos 4A cos 5A cos 6A
Prove that:
cos A + cos 3A + cos 5A + cos 7A = 4 cos A cos 2A cos 4A
Prove that:
`sin A + sin 2A + sin 4A + sin 5A = 4 cos (A/2) cos((3A)/2)sin3A`
Prove that:
sin 3A + sin 2A − sin A = 4 sin A cos \[\frac{A}{2}\] \[\frac{3A}{2}\]
Prove that:
If cosec A + sec A = cosec B + sec B, prove that tan A tan B = \[\cot\frac{A + B}{2}\].
Prove that:
sin (B − C) cos (A − D) + sin (C − A) cos (B − D) + sin (A − B) cos (C − D) = 0
If y sin ϕ = x sin (2θ + ϕ), prove that (x + y) cot (θ + ϕ) = (y − x) cot θ.
If \[x \cos\theta = y \cos\left( \theta + \frac{2\pi}{3} \right) = z \cos\left( \theta + \frac{4\pi}{3} \right)\], prove that \[xy + yz + zx = 0\]
Write the value of \[\sin\frac{\pi}{15}\sin\frac{4\pi}{15}\sin\frac{3\pi}{10}\]
If sin 2A = λ sin 2B, then write the value of \[\frac{\lambda + 1}{\lambda - 1}\]
cos 40° + cos 80° + cos 160° + cos 240° =
The value of cos 52° + cos 68° + cos 172° is
The value of sin 78° − sin 66° − sin 42° + sin 60° is ______.
cos 35° + cos 85° + cos 155° =
If A, B, C are in A.P., then \[\frac{\sin A - \sin C}{\cos C - \cos A}\]=
If sin (B + C − A), sin (C + A − B), sin (A + B − C) are in A.P., then cot A, cot B and cot Care in
If sin x + sin y = \[\sqrt{3}\] (cos y − cos x), then sin 3x + sin 3y =
Express the following as the sum or difference of sine or cosine:
`cos (7"A")/3 sin (5"A")/3`
Express the following as the sum or difference of sine or cosine:
cos 7θ sin 3θ
Prove that:
cos 20° cos 40° cos 80° = `1/8`
Prove that:
`(cos 2"A" - cos 3"A")/(sin "2A" + sin "3A") = tan "A"/2`
Evaluate-
cos 20° + cos 100° + cos 140°
If secx cos5x + 1 = 0, where 0 < x ≤ `pi/2`, then find the value of x.