Advertisements
Advertisements
Question
If A, B, C are in A.P., then \[\frac{\sin A - \sin C}{\cos C - \cos A}\]=
Options
tan B
cot B
tan 2 B
None of these
Solution
cot B
Since A,B and C are in A.P,
B - A = C - B
or, 2B = A + C
\[\frac{\sin A - \sin C}{\cos C - \cos A}\]
\[ = \frac{2\sin\left( \frac{A - C}{2} \right)\cos\left( \frac{A + C}{2} \right)}{- 2\sin\left( \frac{C + A}{2} \right)\sin\left( \frac{C - A}{2} \right)} \left[ \because \sin A - \sin B = 2\sin\left( \frac{A - B}{2} \right)\cos\left( \frac{A + B}{2} \right) \text{ and }\cos A - \cos B = - 2\sin\left( \frac{A + B}{2} \right)\cos\left( \frac{A - B}{2} \right) \right]\]
\[ = \frac{\sin\left( \frac{A - C}{2} \right)\cos\left( \frac{A + C}{2} \right)}{- \sin\left( \frac{A + C}{2} \right)\sin\left( \frac{C - A}{2} \right)}\]
\[= \frac{\sin\left( \frac{A - C}{2} \right)\cos\left( \frac{A + C}{2} \right)}{\sin\left( \frac{A + C}{2} \right)\sin\left( \frac{A - C}{2} \right)}\]
\[ = \frac{\cos\left( \frac{A + C}{2} \right)}{\sin\left( \frac{A + C}{2} \right)}\]
\[ = \frac{\cos B}{\sin B}\]
\[ = \cot B\]
APPEARS IN
RELATED QUESTIONS
Show that :
Prove that:
cos 20° cos 40° cos 80° = \[\frac{1}{8}\]
Prove that:
tan 20° tan 40° tan 60° tan 80° = 3
Show that:
sin (B − C) cos (A − D) + sin (C − A) cos (B − D) + sin (A − B) cos (C − D) = 0
Express each of the following as the product of sines and cosines:
sin 12x + sin 4x
Express each of the following as the product of sines and cosines:
sin 5x − sin x
Express each of the following as the product of sines and cosines:
cos 12x - cos 4x
Prove that:
sin 38° + sin 22° = sin 82°
Prove that:
sin 40° + sin 20° = cos 10°
Prove that:
\[\sin\frac{5\pi}{18} - \cos\frac{4\pi}{9} = \sqrt{3} \sin\frac{\pi}{9}\]
Prove that:
Prove that:
Prove that:
sin 47° + cos 77° = cos 17°
Prove that:
cos A + cos 3A + cos 5A + cos 7A = 4 cos A cos 2A cos 4A
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
sin (B − C) cos (A − D) + sin (C − A) cos (B − D) + sin (A − B) cos (C − D) = 0
If cos (α + β) sin (γ + δ) = cos (α − β) sin (γ − δ), prove that cot α cot β cot γ = cot δ
Write the value of sin \[\frac{\pi}{12}\] sin \[\frac{5\pi}{12}\].
If A + B = \[\frac{\pi}{3}\] and cos A + cos B = 1, then find the value of cos \[\frac{A - B}{2}\].
Write the value of \[\sin\frac{\pi}{15}\sin\frac{4\pi}{15}\sin\frac{3\pi}{10}\]
If sin 2 θ + sin 2 ϕ = \[\frac{1}{2}\] and cos 2 θ + cos 2 ϕ = \[\frac{3}{2}\], then cos2 (θ − ϕ) =
cos 35° + cos 85° + cos 155° =
If sin (B + C − A), sin (C + A − B), sin (A + B − C) are in A.P., then cot A, cot B and cot Care in
Express the following as the product of sine and cosine.
sin A + sin 2A
Prove that:
sin A sin(60° + A) sin(60° – A) = `1/4` sin 3A
Prove that:
sin (A – B) sin C + sin (B – C) sin A + sin(C – A) sin B = 0
Prove that:
`(cos 2"A" - cos 3"A")/(sin "2A" + sin "3A") = tan "A"/2`
Evaluate:
sin 50° – sin 70° + sin 10°
If sin(y + z – x), sin(z + x – y), sin(x + y – z) are in A.P, then prove that tan x, tan y and tan z are in A.P.