Advertisements
Advertisements
Question
If sin 2 θ + sin 2 ϕ = \[\frac{1}{2}\] and cos 2 θ + cos 2 ϕ = \[\frac{3}{2}\], then cos2 (θ − ϕ) =
Options
- \[\frac{3}{8}\]
- \[\frac{5}{8}\]
- \[\frac{3}{4}\]
- \[\frac{5}{4}\]
Solution
Given:
sin 2θ + sin 2ϕ = \[\frac{1}{2}\] .....(i)
and
cos 2θ + cos 2ϕ = \[\frac{3}{2}\] .....(ii)
Squaring and adding (i) and (ii), we get:
(sin 2θ + sin 2ϕ)2 + (cos 2θ + cos 2ϕ)2 = \[\frac{1}{4} + \frac{9}{4}\]
\[\Rightarrow \left[ 2\sin\left( \frac{2\theta + 2\phi}{2} \right)\cos\left( \frac{2\theta - 2\phi}{2} \right) \right]^2 + \left[ 2\cos\left( \frac{2\theta + 2\phi}{2} \right)\cos\left( \frac{2\theta - 2\phi}{2} \right) \right]^2 = \frac{5}{2}\]
\[ \Rightarrow 4 \sin^2 \left( \theta + \phi \right) \cos^2 \left( \theta - \phi \right) + 4 \cos^2 \left( \theta + \phi \right) \cos^2 \left( \theta - \phi \right) = \frac{5}{2}\]
\[ \Rightarrow 4 \cos^2 \left( \theta - \phi \right)\left[ \sin^2 \left( \theta + \phi \right) + \cos^2 \left( \theta + \phi \right) \right] = \frac{5}{2}\]
\[ \Rightarrow 4 \cos^2 \left( \theta - \phi \right) = \frac{5}{2}\]
\[ \Rightarrow \cos^2 \left( \theta - \phi \right) = \frac{5}{8}\]
APPEARS IN
RELATED QUESTIONS
Prove that:
Show that :
Express each of the following as the product of sines and cosines:
cos 12x - cos 4x
Express each of the following as the product of sines and cosines:
sin 2x + cos 4x
Prove that:
Prove that:
sin 47° + cos 77° = cos 17°
Prove that:
cos 3A + cos 5A + cos 7A + cos 15A = 4 cos 4A cos 5A cos 6A
Prove that:
sin 3A + sin 2A − sin A = 4 sin A cos \[\frac{A}{2}\] \[\frac{3A}{2}\]
Prove that:
Prove that:
Prove that:
If cos (α + β) sin (γ + δ) = cos (α − β) sin (γ − δ), prove that cot α cot β cot γ = cot δ
If y sin ϕ = x sin (2θ + ϕ), prove that (x + y) cot (θ + ϕ) = (y − x) cot θ.
If cos (A + B) sin (C − D) = cos (A − B) sin (C + D), prove that tan A tan B tan C + tan D = 0.
If \[m \sin\theta = n \sin\left( \theta + 2\alpha \right)\], prove that \[\tan\left( \theta + \alpha \right) \cot\alpha = \frac{m + n}{m - n}\]
Write the value of sin \[\frac{\pi}{12}\] sin \[\frac{5\pi}{12}\].
If sin A + sin B = α and cos A + cos B = β, then write the value of tan \[\left( \frac{A + B}{2} \right)\].
If cos A = m cos B, then write the value of \[\cot\frac{A + B}{2} \cot\frac{A - B}{2}\].
Write the value of the expression \[\frac{1 - 4 \sin 10^\circ \sin 70^\circ}{2 \sin 10^\circ}\]
If A + B = \[\frac{\pi}{3}\] and cos A + cos B = 1, then find the value of cos \[\frac{A - B}{2}\].
Write the value of \[\sin\frac{\pi}{15}\sin\frac{4\pi}{15}\sin\frac{3\pi}{10}\]
If sin α + sin β = a and cos α − cos β = b, then tan \[\frac{\alpha - \beta}{2}\]=
If A, B, C are in A.P., then \[\frac{\sin A - \sin C}{\cos C - \cos A}\]=
If sin x + sin y = \[\sqrt{3}\] (cos y − cos x), then sin 3x + sin 3y =
If \[\tan\alpha = \frac{x}{x + 1}\] and
Express the following as the product of sine and cosine.
sin 6θ – sin 2θ
Express the following as the product of sine and cosine.
cos 2θ – cos θ
Prove that:
(cos α – cos β)2 + (sin α – sin β)2 = 4 sin2 `((alpha - beta)/2)`
Prove that:
sin (A – B) sin C + sin (B – C) sin A + sin(C – A) sin B = 0
Prove that:
`(cos 7"A" +cos 5"A")/(sin 7"A" −sin 5"A")` = cot A
Find the value of tan22°30′. `["Hint:" "Let" θ = 45°, "use" tan theta/2 = (sin theta/2)/(cos theta/2) = (2sin theta/2 cos theta/2)/(2cos^2 theta/2) = sintheta/(1 + costheta)]`