Advertisements
Advertisements
Question
If \[\tan\alpha = \frac{x}{x + 1}\] and
Options
- \[\frac{\pi}{2}\]
- \[\frac{\pi}{2}\]
- \[\frac{\pi}{2}\]
- \[\frac{\pi}{2}\]
Solution
It is given that \[\tan\alpha = \frac{x}{x + 1}\] and \[\tan\beta = \frac{x}{x + 1}\]
\[\tan\left( \alpha + \beta \right) = \frac{\tan\alpha + \tan\beta}{1 - \tan\alpha \tan\beta}\]
\[ = \frac{\frac{x}{x + 1} + \frac{1}{2x + 1}}{1 - \frac{x}{x + 1} \times \frac{1}{2x + 1}}\]
\[ = \frac{\frac{x\left( 2x + 1 \right) + x + 1}{\left( x + 1 \right)\left( 2x + 1 \right)}}{\frac{\left( x + 1 \right)\left( 2x + 1 \right) - x}{\left( x + 1 \right)\left( 2x + 1 \right)}}\]
\[ = \frac{2 x^2 + x + x + 1}{2 x^2 + 3x + 1 - x}\]
\[= \frac{2 x^2 + 2x + 1}{2 x^2 + 2x + 1}\]
\[ = 1\]
\[\therefore \tan\left( \alpha + \beta \right) = 1 = \tan\frac{\pi}{4}\]
\[ \Rightarrow \alpha + \beta = \frac{\pi}{4}\]
Hence, the correct answer is option D.
APPEARS IN
RELATED QUESTIONS
Prove that:
Show that :
Prove that:
sin 20° sin 40° sin 80° = \[\frac{\sqrt{3}}{8}\]
Prove that:
sin 20° sin 40° sin 60° sin 80° = \[\frac{3}{16}\]
If α + β = \[\frac{\pi}{2}\], show that the maximum value of cos α cos β is \[\frac{1}{2}\].
Prove that:
sin 50° + sin 10° = cos 20°
Prove that:
sin 23° + sin 37° = cos 7°
Prove that:
Prove that:
Prove that:
cos 20° cos 100° + cos 100° cos 140° − 140° cos 200° = −\[\frac{3}{4}\]
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
If cosec A + sec A = cosec B + sec B, prove that tan A tan B = \[\cot\frac{A + B}{2}\].
Prove that:
If \[x \cos\theta = y \cos\left( \theta + \frac{2\pi}{3} \right) = z \cos\left( \theta + \frac{4\pi}{3} \right)\], prove that \[xy + yz + zx = 0\]
If A + B = \[\frac{\pi}{3}\] and cos A + cos B = 1, then find the value of cos \[\frac{A - B}{2}\].
If cos (A + B) sin (C − D) = cos (A − B) sin (C + D), then write the value of tan A tan B tan C.
cos 40° + cos 80° + cos 160° + cos 240° =
cos 35° + cos 85° + cos 155° =
sin 47° + sin 61° − sin 11° − sin 25° is equal to
If cos A = m cos B, then \[\cot\frac{A + B}{2} \cot\frac{B - A}{2}\]=
Express the following as the sum or difference of sine or cosine:
`cos (7"A")/3 sin (5"A")/3`
Express the following as the product of sine and cosine.
cos 2A + cos 4A
Express the following as the product of sine and cosine.
cos 2θ – cos θ
Prove that:
sin A sin(60° + A) sin(60° – A) = `1/4` sin 3A
Evaluate-
cos 20° + cos 100° + cos 140°
Evaluate:
sin 50° – sin 70° + sin 10°
If sin(y + z – x), sin(z + x – y), sin(x + y – z) are in A.P, then prove that tan x, tan y and tan z are in A.P.