Advertisements
Advertisements
Question
If α + β = \[\frac{\pi}{2}\], show that the maximum value of cos α cos β is \[\frac{1}{2}\].
Solution
\[\text{ Let }x = \cos \alpha \cos \beta\]
\[ \Rightarrow x = \frac{1}{2}\left[ 2\cos \alpha \cos \beta \right]\]
\[ \Rightarrow x = \frac{1}{2}\left[ \cos \left( \alpha + \beta \right) + \cos \left( \alpha - \beta \right) \right]\]
\[ \Rightarrow x = \frac{1}{2}\left[ \cos \left( \alpha - \beta \right) + \cos 90^\circ \right]\]
\[ \Rightarrow x = \frac{1}{2}\cos \left( \alpha - \beta \right)\]
Now,
\[ - 1 \leq \cos \left( \alpha - \beta \right) \leq 1\]
\[ \Rightarrow - \frac{1}{2} \leq \frac{1}{2}\cos\left( \alpha - \beta \right) \leq \frac{1}{2}\]
\[ \Rightarrow - \frac{1}{2} \leq x \leq \frac{1}{2}\]
\[ \Rightarrow - \frac{1}{2} \leq \cos \alpha \cos \beta \leq \frac{1}{2}\]
\[\text{Hence}, \frac{1}{2}\text{ is the maximum value of }\cos \alpha \cos \beta .\]
APPEARS IN
RELATED QUESTIONS
Show that :
Show that :
Prove that:
cos 40° cos 80° cos 160° = \[- \frac{1}{8}\]
Prove that:
tan 20° tan 40° tan 60° tan 80° = 3
Prove that:
sin 20° sin 40° sin 60° sin 80° = \[\frac{3}{16}\]
Prove that
\[\tan x \tan \left( \frac{\pi}{3} - x \right) \tan \left( \frac{\pi}{3} + x \right) = \tan 3x\]
Express each of the following as the product of sines and cosines:
sin 5x − sin x
Express each of the following as the product of sines and cosines:
cos 12x - cos 4x
Prove that:
sin 38° + sin 22° = sin 82°
Prove that:
cos 100° + cos 20° = cos 40°
Prove that:
sin 50° − sin 70° + sin 10° = 0
Prove that:
\[\sin\frac{5\pi}{18} - \cos\frac{4\pi}{9} = \sqrt{3} \sin\frac{\pi}{9}\]
Prove that:
Prove that:
Prove that:
Prove that:
sin 3A + sin 2A − sin A = 4 sin A cos \[\frac{A}{2}\] \[\frac{3A}{2}\]
Prove that:
Prove that:
Prove that:
Prove that:
If y sin ϕ = x sin (2θ + ϕ), prove that (x + y) cot (θ + ϕ) = (y − x) cot θ.
If cos (A + B) sin (C − D) = cos (A − B) sin (C + D), prove that tan A tan B tan C + tan D = 0.
If \[x \cos\theta = y \cos\left( \theta + \frac{2\pi}{3} \right) = z \cos\left( \theta + \frac{4\pi}{3} \right)\], prove that \[xy + yz + zx = 0\]
If \[m \sin\theta = n \sin\left( \theta + 2\alpha \right)\], prove that \[\tan\left( \theta + \alpha \right) \cot\alpha = \frac{m + n}{m - n}\]
If (cos α + cos β)2 + (sin α + sin β)2 = \[\lambda \cos^2 \left( \frac{\alpha - \beta}{2} \right)\], write the value of λ.
Write the value of \[\frac{\sin A + \sin 3A}{\cos A + \cos 3A}\]
If sin 2 θ + sin 2 ϕ = \[\frac{1}{2}\] and cos 2 θ + cos 2 ϕ = \[\frac{3}{2}\], then cos2 (θ − ϕ) =
The value of sin 78° − sin 66° − sin 42° + sin 60° is ______.
The value of sin 50° − sin 70° + sin 10° is equal to
If \[\tan\alpha = \frac{x}{x + 1}\] and
Prove that:
sin A sin(60° + A) sin(60° – A) = `1/4` sin 3A
Prove that:
sin (A – B) sin C + sin (B – C) sin A + sin(C – A) sin B = 0
If cos A + cos B = `1/2` and sin A + sin B = `1/4`, prove that tan `(("A + B")/2) = 1/2`
Find the value of tan22°30′. `["Hint:" "Let" θ = 45°, "use" tan theta/2 = (sin theta/2)/(cos theta/2) = (2sin theta/2 cos theta/2)/(2cos^2 theta/2) = sintheta/(1 + costheta)]`
If secx cos5x + 1 = 0, where 0 < x ≤ `pi/2`, then find the value of x.