Advertisements
Advertisements
Question
If cos (A + B) sin (C − D) = cos (A − B) sin (C + D), prove that tan A tan B tan C + tan D = 0.
Solution
cos (A + B) sin (C − D) = cos (A − B) sin (C + D)
\[\Rightarrow\][cosA cosB − sinA sinB] [sinC cosD − cosC sinD] = [cosA cosB + sinA sinB] [sinC cosD + cosC sinD]
\[\text{ Dividing both sides by }\cos A \cos B \cos C \cos D, \]
\[\frac{\left[ \cos A \cos B - \sin A \sin B \right]\left[ \sin C \cos D - \cos C \sin D \right]}{\cos A \cos B \cos C \cos D} = \frac{\left[ \cos A \cos B + \sin A \sin B \right]\left[ \sin C \cos D + \cos C \sin D \right]}{\cos A \cos B \cos C \cos D}\]
\[ \Rightarrow \frac{\left[ \cos A \cos B - \sin A \sin B \right]}{\cos A \cos B} \times \frac{\left[ \sin C\cos D - \cos C \sin D \right]}{\cos C \cos D} = \frac{\left[ \cos A \cos B + \sin A \sin B \right]}{\cos A \cos B} \times \frac{\left[ \sin C \cos D + \cos C \sin D \right]}{\cos C \cos D}\]
\[ \Rightarrow \left[ 1 - \tan A \tan B \right]\left[ \tan C - \tan D \right] = \left[ 1 + \tan A \tan B \right]\left[ \tan C + \tan D \right]\]
\[ \Rightarrow \tan C - \tan D - \tan A \tan B \tan C + \tan A \tan B \tan D = \tan C + \tan D + \tan A \tan B \tan C + \tan A \tan B \tan D\]
\[ \Rightarrow - \tan D - \tan D = \tan A \tan B \tan C + \tan A \tan B \tan C\]
\[ \Rightarrow - 2\tan D = 2\tan A \tan B \tan C\]
\[ \Rightarrow \tan A \tan B \tan C = - \tan D\]
\[ \Rightarrow \tan A \tan B \tan C + \tan D = 0\]
Hence proved.
APPEARS IN
RELATED QUESTIONS
Prove that:
Show that :
Prove that:
cos 10° cos 30° cos 50° cos 70° = \[\frac{3}{16}\]
Show that:
sin A sin (B − C) + sin B sin (C − A) + sin C sin (A − B) = 0
Prove that
\[\tan x \tan \left( \frac{\pi}{3} - x \right) \tan \left( \frac{\pi}{3} + x \right) = \tan 3x\]
Express each of the following as the product of sines and cosines:
cos 12x + cos 8x
Prove that:
cos 100° + cos 20° = cos 40°
Prove that:
sin 50° + sin 10° = cos 20°
Prove that:
sin 40° + sin 20° = cos 10°
Prove that:
Prove that:
`sin A + sin 2A + sin 4A + sin 5A = 4 cos (A/2) cos((3A)/2)sin3A`
Prove that:
cos 20° cos 100° + cos 100° cos 140° − 140° cos 200° = −\[\frac{3}{4}\]
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
If cosec A + sec A = cosec B + sec B, prove that tan A tan B = \[\cot\frac{A + B}{2}\].
If cos (α + β) sin (γ + δ) = cos (α − β) sin (γ − δ), prove that cot α cot β cot γ = cot δ
If y sin ϕ = x sin (2θ + ϕ), prove that (x + y) cot (θ + ϕ) = (y − x) cot θ.
If \[m \sin\theta = n \sin\left( \theta + 2\alpha \right)\], prove that \[\tan\left( \theta + \alpha \right) \cot\alpha = \frac{m + n}{m - n}\]
cos 40° + cos 80° + cos 160° + cos 240° =
sin 163° cos 347° + sin 73° sin 167° =
cos 35° + cos 85° + cos 155° =
If sin (B + C − A), sin (C + A − B), sin (A + B − C) are in A.P., then cot A, cot B and cot Care in
If \[\tan\alpha = \frac{x}{x + 1}\] and
Express the following as the sum or difference of sine or cosine:
cos(60° + A) sin(120° + A)
Express the following as the sum or difference of sine or cosine:
`cos (7"A")/3 sin (5"A")/3`
Express the following as the product of sine and cosine.
cos 2A + cos 4A
Express the following as the product of sine and cosine.
sin 6θ – sin 2θ
Prove that:
tan 20° tan 40° tan 80° = `sqrt3`.
Prove that:
sin (A – B) sin C + sin (B – C) sin A + sin(C – A) sin B = 0
Prove that:
`(cos 2"A" - cos 3"A")/(sin "2A" + sin "3A") = tan "A"/2`