English

Prove That: Sin 50° + Sin 10° = Cos 20° - Mathematics

Advertisements
Advertisements

Question

Prove that:
sin 50° + sin 10° = cos 20°

Sum

Solution

Consider LHS: 
\[\sin 50^\circ + \sin 10^\circ\]
\[ = 2\sin \left( \frac{50^\circ + 10^\circ}{2} \right) \cos \left( \frac{50^\circ - 10^\circ}{2} \right) \left\{ \because \sin A + \sin B = 2\sin \left( \frac{A + B}{2} \right) \cos \left( \frac{A - B}{2} \right) \right\}\]
\[ = 2\sin 30^\circ \cos 20^\circ\]
\[ = 2 \times \frac{1}{2}\cos 20^\circ\]
\[ = \cos 20^\circ\]
Hence, LHS = RHS .

shaalaa.com
Transformation Formulae
  Is there an error in this question or solution?
Chapter 8: Transformation formulae - Exercise 8.2 [Page 17]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 8 Transformation formulae
Exercise 8.2 | Q 2.3 | Page 17

RELATED QUESTIONS

Prove that:

\[2\cos\frac{5\pi}{12}\cos\frac{\pi}{12} = \frac{1}{2}\]

Show that :

\[\sin 25^\circ \cos 115^\circ = \frac{1}{2}\left( \sin 140^\circ - 1 \right)\]

\[\text{ Prove that }4 \cos x \cos\left( \frac{\pi}{3} + x \right) \cos \left( \frac{\pi}{3} - x \right) = \cos 3x .\]

 


Prove that:
cos 10° cos 30° cos 50° cos 70° = \[\frac{3}{16}\]

 


Prove that:
tan 20° tan 40° tan 60° tan 80° = 3

 


Express each of the following as the product of sines and cosines:
 cos 12x + cos 8x


Prove that:
sin 38° + sin 22° = sin 82°


Prove that:
 cos 100° + cos 20° = cos 40°


Prove that:
 sin 23° + sin 37° = cos 7°


Prove that:
 cos 55° + cos 65° + cos 175° = 0


Prove that:
 sin 50° − sin 70° + sin 10° = 0



Prove that:
 cos 80° + cos 40° − cos 20° = 0


Prove that:
\[\sin\frac{5\pi}{18} - \cos\frac{4\pi}{9} = \sqrt{3} \sin\frac{\pi}{9}\]


Prove that:

\[\cos\frac{\pi}{12} - \sin\frac{\pi}{12} = \frac{1}{\sqrt{2}}\]

 


Prove that:
sin 47° + cos 77° = cos 17°


Prove that:
cos 3A + cos 5A + cos 7A + cos 15A = 4 cos 4A cos 5A cos 6A


Prove that \[\cos x \cos \frac{x}{2} - \cos 3x \cos\frac{9x}{2} = \sin 7x \sin 8x\]

Prove that:

\[\frac{\sin 9A - \sin 7A}{\cos 7A - \cos 9A} = \cot 8A\]

Prove that:

\[\frac{\sin A + \sin B}{\sin A - \sin B} = \tan \left( \frac{A + B}{2} \right) \cot \left( \frac{A - B}{2} \right)\]

Prove that:

\[\frac{\cos 4A + \cos 3A + \cos 2A}{\sin 4A + \sin 3A + \sin 2A} = \cot 3A\]

 


Prove that:

\[\frac{\sin 3A + \sin 5A + \sin 7A + \sin 9A}{\cos 3A + \cos 5A + \cos 7A + \cos 9A} = \tan 6A\]

Prove that:

\[\frac{\sin 5A - \sin 7A + \sin 8A - \sin 4A}{\cos 4A + \cos 7A - \cos 5A - \cos 8A} = \cot 6A\]

Prove that:

\[\frac{\sin \left( \theta + \phi \right) - 2 \sin \theta + \sin \left( \theta - \phi \right)}{\cos \left( \theta + \phi \right) - 2 \cos \theta + \cos \left( \theta - \phi \right)} = \tan \theta\]

If (cos α + cos β)2 + (sin α + sin β)2 = \[\lambda \cos^2 \left( \frac{\alpha - \beta}{2} \right)\], write the value of λ. 


If cos A = m cos B, then write the value of \[\cot\frac{A + B}{2} \cot\frac{A - B}{2}\].

 

If A + B = \[\frac{\pi}{3}\] and cos A + cos B = 1, then find the value of cos \[\frac{A - B}{2}\].

 

 


cos 40° + cos 80° + cos 160° + cos 240° =


The value of cos 52° + cos 68° + cos 172° is


The value of sin 78° − sin 66° − sin 42° + sin 60° is ______.


If sin α + sin β = a and cos α − cos β = b, then tan \[\frac{\alpha - \beta}{2}\]=


cos 35° + cos 85° + cos 155° =


sin 47° + sin 61° − sin 11° − sin 25° is equal to


Express the following as the sum or difference of sine or cosine:

`sin  "A"/8  sin  (3"A")/8`


Prove that:

`(cos 7"A" +cos 5"A")/(sin 7"A" −sin 5"A")` = cot A


If cos A + cos B = `1/2` and sin A + sin B = `1/4`, prove that tan `(("A + B")/2) = 1/2`


If tan θ = `1/sqrt5` and θ lies in the first quadrant then cos θ is:


If secx cos5x + 1 = 0, where 0 < x ≤ `pi/2`, then find the value of x.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×