Advertisements
Advertisements
Question
Prove that:
cos 80° + cos 40° − cos 20° = 0
Solution
Consider LHS:
\[\cos 80^\circ + \cos 40^\circ - \cos 20^\circ\]
\[ = 2\cos \left( \frac{80^\circ + 40^\circ}{2} \right) \cos \left( \frac{80^\circ - 40^\circ}{2} \right) - \cos 20^\circ \left\{ \because \cos A + \cos B = 2\cos\left( \frac{A + B}{2} \right)\cos\left( \frac{A - B}{2} \right) \right\}\]
\[ = 2\cos 60^\circ \cos 20^\circ - \cos 20^\circ\]
\[ = 2 \times \frac{1}{2}\cos 20^\circ - \cos20^\circ\]
\[ = \cos 20^\circ - \cos 20^\circ\]
\[ = 0\]
Hence, LHS = RHS.
APPEARS IN
RELATED QUESTIONS
Prove that:
Show that :
Prove that:
cos 10° cos 30° cos 50° cos 70° = \[\frac{3}{16}\]
Prove that:
sin 20° sin 40° sin 60° sin 80° = \[\frac{3}{16}\]
Prove that
\[\tan x \tan \left( \frac{\pi}{3} - x \right) \tan \left( \frac{\pi}{3} + x \right) = \tan 3x\]
If α + β = \[\frac{\pi}{2}\], show that the maximum value of cos α cos β is \[\frac{1}{2}\].
Express each of the following as the product of sines and cosines:
cos 12x + cos 8x
Prove that:
sin 38° + sin 22° = sin 82°
Prove that:
\[\sin\frac{5\pi}{18} - \cos\frac{4\pi}{9} = \sqrt{3} \sin\frac{\pi}{9}\]
Prove that:
Prove that:
Prove that:
sin 47° + cos 77° = cos 17°
Prove that:
If cos (α + β) sin (γ + δ) = cos (α − β) sin (γ − δ), prove that cot α cot β cot γ = cot δ
Write the value of sin \[\frac{\pi}{12}\] sin \[\frac{5\pi}{12}\].
Write the value of the expression \[\frac{1 - 4 \sin 10^\circ \sin 70^\circ}{2 \sin 10^\circ}\]
sin 163° cos 347° + sin 73° sin 167° =
If cos A = m cos B, then \[\cot\frac{A + B}{2} \cot\frac{B - A}{2}\]=
If sin x + sin y = \[\sqrt{3}\] (cos y − cos x), then sin 3x + sin 3y =
If \[\tan\alpha = \frac{x}{x + 1}\] and
Express the following as the sum or difference of sine or cosine:
`sin "A"/8 sin (3"A")/8`
Express the following as the sum or difference of sine or cosine:
cos(60° + A) sin(120° + A)
Express the following as the product of sine and cosine.
sin A + sin 2A
Express the following as the product of sine and cosine.
cos 2A + cos 4A
Express the following as the product of sine and cosine.
cos 2θ – cos θ
Prove that:
(cos α – cos β)2 + (sin α – sin β)2 = 4 sin2 `((alpha - beta)/2)`
Prove that:
sin A sin(60° + A) sin(60° – A) = `1/4` sin 3A
Prove that:
sin (A – B) sin C + sin (B – C) sin A + sin(C – A) sin B = 0
Prove that:
2 cos `pi/13` cos \[\frac{9\pi}{13} + \text{cos} \frac{3\pi}{13} + \text{cos} \frac{5\pi}{13}\] = 0
Prove that cos 20° cos 40° cos 60° cos 80° = `3/16`.
Evaluate:
sin 50° – sin 70° + sin 10°
If sin(y + z – x), sin(z + x – y), sin(x + y – z) are in A.P, then prove that tan x, tan y and tan z are in A.P.
If secx cos5x + 1 = 0, where 0 < x ≤ `pi/2`, then find the value of x.