Advertisements
Advertisements
Question
Solution
\[\text{ LHS }= \cos x \cos\frac{x}{2} - \cos 3x \cos\frac{9x}{2}\]
\[ = \frac{1}{2}\left[ 2\cos x \cos\frac{x}{2} - 2\cos 3x \cos\frac{9x}{2} \right]\]
\[ = \frac{1}{2}\left[ \cos\left( x + \frac{x}{2} \right) + \cos\left( x - \frac{x}{2} \right) - \cos\left( 3x + \frac{9x}{2} \right) - \cos\left( 3x - \frac{9x}{2} \right) \right]\]
\[ = \frac{1}{2}\left[ \cos\frac{3x}{2} + \cos\frac{x}{2} - \cos\frac{15x}{2} - \cos\frac{3x}{2} \right]\]
\[ = \frac{1}{2}\left[ \cos\frac{x}{2} - \cos\frac{15x}{2} \right]\]
\[ = \frac{1}{2}\left[ - 2\sin\left( \frac{x + 15x}{4} \right)\sin\left( \frac{x - 15x}{4} \right) \right]\]
\[ = \frac{1}{2}\left[ - 2\sin\left( 4x \right)\sin\left( - \frac{7x}{2} \right) \right]\]
\[ = \sin\left( 4x \right)\sin\left( \frac{7x}{2} \right) = \text{ RHS }\]
Hence, LHS = RHS
Notes
Disclaimer: The given question is incorrect. The correct question should be
APPEARS IN
RELATED QUESTIONS
Prove that:
Prove that:
cos 40° cos 80° cos 160° = \[- \frac{1}{8}\]
Show that:
sin (B − C) cos (A − D) + sin (C − A) cos (B − D) + sin (A − B) cos (C − D) = 0
Prove that
\[\tan x \tan \left( \frac{\pi}{3} - x \right) \tan \left( \frac{\pi}{3} + x \right) = \tan 3x\]
If α + β = \[\frac{\pi}{2}\], show that the maximum value of cos α cos β is \[\frac{1}{2}\].
Express each of the following as the product of sines and cosines:
cos 12x + cos 8x
Prove that:
sin 38° + sin 22° = sin 82°
Prove that:
cos 80° + cos 40° − cos 20° = 0
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
cos (A + B + C) + cos (A − B + C) + cos (A + B − C) + cos (− A + B + C) = 4 cos A cos Bcos C
If cos (A + B) sin (C − D) = cos (A − B) sin (C + D), prove that tan A tan B tan C + tan D = 0.
If sin A + sin B = α and cos A + cos B = β, then write the value of tan \[\left( \frac{A + B}{2} \right)\].
If cos A = m cos B, then write the value of \[\cot\frac{A + B}{2} \cot\frac{A - B}{2}\].
Write the value of the expression \[\frac{1 - 4 \sin 10^\circ \sin 70^\circ}{2 \sin 10^\circ}\]
If A + B = \[\frac{\pi}{3}\] and cos A + cos B = 1, then find the value of cos \[\frac{A - B}{2}\].
The value of cos 52° + cos 68° + cos 172° is
cos 35° + cos 85° + cos 155° =
The value of sin 50° − sin 70° + sin 10° is equal to
If A, B, C are in A.P., then \[\frac{\sin A - \sin C}{\cos C - \cos A}\]=
If sin x + sin y = \[\sqrt{3}\] (cos y − cos x), then sin 3x + sin 3y =
Prove that:
`(cos 7"A" +cos 5"A")/(sin 7"A" −sin 5"A")` = cot A
Evaluate:
sin 50° – sin 70° + sin 10°
If sin(y + z – x), sin(z + x – y), sin(x + y – z) are in A.P, then prove that tan x, tan y and tan z are in A.P.
If tan θ = `1/sqrt5` and θ lies in the first quadrant then cos θ is:
If secx cos5x + 1 = 0, where 0 < x ≤ `pi/2`, then find the value of x.