English

Show That: Sin (B − C) Cos (A − D) + Sin (C − A) Cos (B − D) + Sin (A − B) Cos (C − D) = 0 - Mathematics

Advertisements
Advertisements

Question

Show that:
sin (B − C) cos (A − D) + sin (C − A) cos (B − D) + sin (A − B) cos (C − D) = 0

Sum

Solution

Consider LHS: 
\[\sin \left( B - C \right) \cos \left( A - D \right) + \sin \left( C - A \right) \cos \left( B - D \right) + \sin \left( A - B \right) \cos \left( C - D \right)\]
\[= \frac{1}{2}\left[ 2\sin \left( B - C \right) \cos \left( A - D \right) \right] + \frac{1}{2}\left[ 2\sin \left( C - A \right) \cos \left( B - D \right) \right] + \frac{1}{2}\left[ 2\sin \left( A - B \right) \cos\left( C - D \right) \right]\]
\[ = \frac{1}{2}\left[ \sin \left\{ \left( B - C \right) + \left( A - D \right) \right\} + \sin \left\{ \left( B - C \right) - \left( A - D \right) \right\} \right] + \frac{1}{2}\left[ \sin \left\{ \left( C - A \right) + \left( B - D \right) \right\} + \sin \left\{ \left( C - A \right) - \left( B - D \right) \right\} \right] + \frac{1}{2}\left[ \sin \left\{ \left( A - B \right) + \left( C - D \right) \right\} + \sin \left\{ \left( A - B \right) - \left( C - D \right) \right\} \right]\]
\[ = \frac{1}{2}\left[ \sin \left( B - C + A - D \right) + \sin \left( B - C - A + D \right) \right] + \frac{1}{2}\left[ \sin \left( C - A + B - D \right) + \sin \left( C - A - B + D \right) \right] + \frac{1}{2}\left[ \sin \left( A - B + C - D \right) + \sin \left( A - B - C + D \right) \right]\]
\[ = \frac{1}{2}\left[ \sin \left( B - C + A - D \right) + \sin \left( B - C - A + D \right) \right] + \frac{1}{2}\left[ \sin \left\{ - \left( - C + A - B + D \right) \right\} + \sin \left\{ - \left( - C + A + B - D \right) \right\} \right] + \frac{1}{2}\left[ \sin\left\{ - \left( - A + B - C + D \right) \right\} + \sin \left( A - B - C + D \right) \right]\]
\[ = \frac{1}{2}\sin\left( B - C + A - D \right) + \frac{1}{2}\sin\left( B - C - A + D \right) - \frac{1}{2}\sin\left( - C + A - B + D \right) - \frac{1}{2}\sin\left( - C + A + B - D \right) - \frac{1}{2}\sin\left( - A + B - C + D \right) + \frac{1}{2}\sin\left( A - B - C + D \right)\]
\[ = 0\]
 = RHS

shaalaa.com
Transformation Formulae
  Is there an error in this question or solution?
Chapter 8: Transformation formulae - Exercise 8.1 [Page 7]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 8 Transformation formulae
Exercise 8.1 | Q 6.2 | Page 7

RELATED QUESTIONS

Prove that:
cos 20° cos 40° cos 80° = \[\frac{1}{8}\]

 


Prove that:
sin 10° sin 50° sin 60° sin 70° = \[\frac{\sqrt{3}}{16}\]

 


Express each of the following as the product of sines and cosines:
sin 12x + sin 4x


Prove that:
 cos 100° + cos 20° = cos 40°


Prove that:
sin 40° + sin 20° = cos 10°


Prove that:
 cos 80° + cos 40° − cos 20° = 0


Prove that:

sin 51° + cos 81° = cos 21°

Prove that:
cos 3A + cos 5A + cos 7A + cos 15A = 4 cos 4A cos 5A cos 6A


Prove that:
 `sin A + sin 2A + sin 4A + sin 5A = 4 cos (A/2) cos((3A)/2)sin3A`


Prove that:
sin 3A + sin 2A − sin A = 4 sin A cos \[\frac{A}{2}\] \[\frac{3A}{2}\]

 


Prove that:

\[\frac{\sin 9A - \sin 7A}{\cos 7A - \cos 9A} = \cot 8A\]

Prove that:

\[\frac{\sin A \sin 2A + \sin 3A \sin 6A}{\sin A \cos 2A + \sin 3A \cos 6A} = \tan 5A\]

Prove that:

\[\sin \alpha + \sin \beta + \sin \gamma - \sin (\alpha + \beta + \gamma) = 4 \sin \left( \frac{\alpha + \beta}{2} \right) \sin \left( \frac{\beta + \gamma}{2} \right) \sin \left( \frac{\gamma + \alpha}{2} \right)\]

 


If cosec A + sec A = cosec B + sec B, prove that tan A tan B = \[\cot\frac{A + B}{2}\].


\[\text{ If }\sin 2A = \lambda \sin 2B, \text{ prove that }\frac{\tan (A + B)}{\tan (A - B)} = \frac{\lambda + 1}{\lambda - 1}\]

 


Prove that:

\[\frac{\cos (A + B + C) + \cos ( - A + B + C) + \cos (A - B + C) + \cos (A + B - C)}{\sin (A + B + C) + \sin ( - A + B + C) + \sin (A - B + C) - \sin (A + B - C)} = \cot C\]

Prove that:
 sin (B − C) cos (A − D) + sin (C − A) cos (B − D) + sin (A − B) cos (C − D) = 0


\[\text{ If }\frac{\cos (A - B)}{\cos (A + B)} + \frac{\cos (C + D)}{\cos (C - D)} = 0, \text {Prove that }\tan A \tan B \tan C \tan D = - 1\]

 


If cos (α + β) sin (γ + δ) = cos (α − β) sin (γ − δ), prove that cot α cot β cot γ = cot δ

 

If cos (A + B) sin (C − D) = cos (A − B) sin (C + D), prove that tan A tan B tan C + tan D = 0.

 

If \[x \cos\theta = y \cos\left( \theta + \frac{2\pi}{3} \right) = z \cos\left( \theta + \frac{4\pi}{3} \right)\], prove that \[xy + yz + zx = 0\]

 

 


If \[m \sin\theta = n \sin\left( \theta + 2\alpha \right)\], prove that \[\tan\left( \theta + \alpha \right) \cot\alpha = \frac{m + n}{m - n}\]


Write the value of \[\sin\frac{\pi}{15}\sin\frac{4\pi}{15}\sin\frac{3\pi}{10}\]


If sin 2A = λ sin 2B, then write the value of \[\frac{\lambda + 1}{\lambda - 1}\]


The value of cos 52° + cos 68° + cos 172° is


cos 35° + cos 85° + cos 155° =


Express the following as the sum or difference of sine or cosine:

`sin  "A"/8  sin  (3"A")/8`


Express the following as the sum or difference of sine or cosine:

cos 7θ sin 3θ


Express the following as the product of sine and cosine.

sin 6θ – sin 2θ


Express the following as the product of sine and cosine.

cos 2θ – cos θ


Prove that:

cos 20° cos 40° cos 80° = `1/8`


Prove that:

(cos α – cos β)2 + (sin α – sin β)2 = 4 sin2 `((alpha - beta)/2)`


Prove that:

`(cos 7"A" +cos 5"A")/(sin 7"A" −sin 5"A")` = cot A


If sin(y + z – x), sin(z + x – y), sin(x + y – z) are in A.P, then prove that tan x, tan y and tan z are in A.P.


If tan θ = `1/sqrt5` and θ lies in the first quadrant then cos θ is:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×