Advertisements
Advertisements
Question
Show that:
sin (B − C) cos (A − D) + sin (C − A) cos (B − D) + sin (A − B) cos (C − D) = 0
Solution
Consider LHS:
\[\sin \left( B - C \right) \cos \left( A - D \right) + \sin \left( C - A \right) \cos \left( B - D \right) + \sin \left( A - B \right) \cos \left( C - D \right)\]
\[= \frac{1}{2}\left[ 2\sin \left( B - C \right) \cos \left( A - D \right) \right] + \frac{1}{2}\left[ 2\sin \left( C - A \right) \cos \left( B - D \right) \right] + \frac{1}{2}\left[ 2\sin \left( A - B \right) \cos\left( C - D \right) \right]\]
\[ = \frac{1}{2}\left[ \sin \left\{ \left( B - C \right) + \left( A - D \right) \right\} + \sin \left\{ \left( B - C \right) - \left( A - D \right) \right\} \right] + \frac{1}{2}\left[ \sin \left\{ \left( C - A \right) + \left( B - D \right) \right\} + \sin \left\{ \left( C - A \right) - \left( B - D \right) \right\} \right] + \frac{1}{2}\left[ \sin \left\{ \left( A - B \right) + \left( C - D \right) \right\} + \sin \left\{ \left( A - B \right) - \left( C - D \right) \right\} \right]\]
\[ = \frac{1}{2}\left[ \sin \left( B - C + A - D \right) + \sin \left( B - C - A + D \right) \right] + \frac{1}{2}\left[ \sin \left( C - A + B - D \right) + \sin \left( C - A - B + D \right) \right] + \frac{1}{2}\left[ \sin \left( A - B + C - D \right) + \sin \left( A - B - C + D \right) \right]\]
\[ = \frac{1}{2}\left[ \sin \left( B - C + A - D \right) + \sin \left( B - C - A + D \right) \right] + \frac{1}{2}\left[ \sin \left\{ - \left( - C + A - B + D \right) \right\} + \sin \left\{ - \left( - C + A + B - D \right) \right\} \right] + \frac{1}{2}\left[ \sin\left\{ - \left( - A + B - C + D \right) \right\} + \sin \left( A - B - C + D \right) \right]\]
\[ = \frac{1}{2}\sin\left( B - C + A - D \right) + \frac{1}{2}\sin\left( B - C - A + D \right) - \frac{1}{2}\sin\left( - C + A - B + D \right) - \frac{1}{2}\sin\left( - C + A + B - D \right) - \frac{1}{2}\sin\left( - A + B - C + D \right) + \frac{1}{2}\sin\left( A - B - C + D \right)\]
\[ = 0\]
= RHS
APPEARS IN
RELATED QUESTIONS
Prove that:
cos 20° cos 40° cos 80° = \[\frac{1}{8}\]
Prove that:
sin 10° sin 50° sin 60° sin 70° = \[\frac{\sqrt{3}}{16}\]
Express each of the following as the product of sines and cosines:
sin 12x + sin 4x
Prove that:
cos 100° + cos 20° = cos 40°
Prove that:
sin 40° + sin 20° = cos 10°
Prove that:
cos 80° + cos 40° − cos 20° = 0
Prove that:
Prove that:
cos 3A + cos 5A + cos 7A + cos 15A = 4 cos 4A cos 5A cos 6A
Prove that:
`sin A + sin 2A + sin 4A + sin 5A = 4 cos (A/2) cos((3A)/2)sin3A`
Prove that:
sin 3A + sin 2A − sin A = 4 sin A cos \[\frac{A}{2}\] \[\frac{3A}{2}\]
Prove that:
Prove that:
Prove that:
If cosec A + sec A = cosec B + sec B, prove that tan A tan B = \[\cot\frac{A + B}{2}\].
Prove that:
Prove that:
sin (B − C) cos (A − D) + sin (C − A) cos (B − D) + sin (A − B) cos (C − D) = 0
If cos (α + β) sin (γ + δ) = cos (α − β) sin (γ − δ), prove that cot α cot β cot γ = cot δ
If cos (A + B) sin (C − D) = cos (A − B) sin (C + D), prove that tan A tan B tan C + tan D = 0.
If \[x \cos\theta = y \cos\left( \theta + \frac{2\pi}{3} \right) = z \cos\left( \theta + \frac{4\pi}{3} \right)\], prove that \[xy + yz + zx = 0\]
If \[m \sin\theta = n \sin\left( \theta + 2\alpha \right)\], prove that \[\tan\left( \theta + \alpha \right) \cot\alpha = \frac{m + n}{m - n}\]
Write the value of \[\sin\frac{\pi}{15}\sin\frac{4\pi}{15}\sin\frac{3\pi}{10}\]
If sin 2A = λ sin 2B, then write the value of \[\frac{\lambda + 1}{\lambda - 1}\]
The value of cos 52° + cos 68° + cos 172° is
cos 35° + cos 85° + cos 155° =
Express the following as the sum or difference of sine or cosine:
`sin "A"/8 sin (3"A")/8`
Express the following as the sum or difference of sine or cosine:
cos 7θ sin 3θ
Express the following as the product of sine and cosine.
sin 6θ – sin 2θ
Express the following as the product of sine and cosine.
cos 2θ – cos θ
Prove that:
cos 20° cos 40° cos 80° = `1/8`
Prove that:
(cos α – cos β)2 + (sin α – sin β)2 = 4 sin2 `((alpha - beta)/2)`
Prove that:
`(cos 7"A" +cos 5"A")/(sin 7"A" −sin 5"A")` = cot A
If sin(y + z – x), sin(z + x – y), sin(x + y – z) are in A.P, then prove that tan x, tan y and tan z are in A.P.
If tan θ = `1/sqrt5` and θ lies in the first quadrant then cos θ is: