English

Prove That: Sin (B − C) Cos (A − D) + Sin (C − A) Cos (B − D) + Sin (A − B) Cos (C − D) = 0 - Mathematics

Advertisements
Advertisements

Question

Prove that:
 sin (B − C) cos (A − D) + sin (C − A) cos (B − D) + sin (A − B) cos (C − D) = 0

Sum

Solution

Consider LHS:
\[\sin (B - C) \cos (A - D) + \sin (C - A) \cos (B - D) + \sin (A - B) \cos (C - D)\]
Multiplying by 2: 
\[ 2\sin (B - C) \cos (A - D) + 2\sin(C - A) \cos (B - D) + 2\sin (A - B) \cos (C - D)\]
\[ = \sin \left( B - C + A - D \right) + \sin \left( B - C - A + D \right) + \sin \left( C - A + B - D \right) + \sin \left( C - A - B + D \right) + \sin \left( A - B + C - D \right) + \sin \left( A - B - C + D \right)\]
\[ = \sin\left\{ - \left( C + D - A - B \right) \right\} + \sin\left\{ - \left( A + C - B - D \right) \right\} + \sin\left\{ - \left( A + D - B - C \right) \right\} + \sin\left( C - A - B + D \right) + \sin\left( A - B + C - D \right) + \sin\left( A - B - C + D \right)\]
\[ = - \sin\left( C + D - A - B \right) - \sin\left( A + C - B - D \right) - \sin\left( A + D - B - C \right) + \sin\left( C - A - B + D \right) + \sin\left( A - B + C - D \right) + \sin\left( A - B - C + D \right)\]
\[ = 0\]
 = RHS
Hence, LHS = RHS. 

shaalaa.com
Transformation Formulae
  Is there an error in this question or solution?
Chapter 8: Transformation formulae - Exercise 8.2 [Page 19]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 8 Transformation formulae
Exercise 8.2 | Q 13.2 | Page 19

RELATED QUESTIONS

Prove that: 

\[2\sin\frac{5\pi}{12}\cos\frac{\pi}{12} = \frac{\sqrt{3} + 2}{2}\]

Prove that:
cos 10° cos 30° cos 50° cos 70° = \[\frac{3}{16}\]

 


Prove that:
cos 40° cos 80° cos 160° = \[- \frac{1}{8}\]

 


Prove that:
tan 20° tan 40° tan 60° tan 80° = 3

 


Prove that tan 20° tan 30° tan 40° tan 80° = 1.


Express each of the following as the product of sines and cosines:
sin 12x + sin 4x


Express each of the following as the product of sines and cosines:
sin 5x − sin x


Express each of the following as the product of sines and cosines:
 cos 12x - cos 4x


Prove that:
sin 105° + cos 105° = cos 45°


Prove that:

sin 80° − cos 70° = cos 50°

Prove that:

\[\cos\left( \frac{\pi}{4} + x \right) + \cos\left( \frac{\pi}{4} - x \right) = \sqrt{2} \cos x\]

 


Prove that:
sin 47° + cos 77° = cos 17°


Prove that:
 `sin A + sin 2A + sin 4A + sin 5A = 4 cos (A/2) cos((3A)/2)sin3A`


Prove that:

cos 20° cos 100° + cos 100° cos 140° − 140° cos 200° = −\[\frac{3}{4}\]

 


Prove that:

\[\frac{\sin A + \sin 3A}{\cos A - \cos 3A} = \cot A\]

 


Prove that:

\[\frac{\sin 9A - \sin 7A}{\cos 7A - \cos 9A} = \cot 8A\]

Prove that:

\[\frac{\sin A - \sin B}{\cos A + \cos B} = \tan\frac{A - B}{2}\]

Prove that:

\[\frac{\cos 4A + \cos 3A + \cos 2A}{\sin 4A + \sin 3A + \sin 2A} = \cot 3A\]

 


Prove that:

\[\frac{\sin A \sin 2A + \sin 3A \sin 6A}{\sin A \cos 2A + \sin 3A \cos 6A} = \tan 5A\]

Prove that:

\[\frac{\sin \left( \theta + \phi \right) - 2 \sin \theta + \sin \left( \theta - \phi \right)}{\cos \left( \theta + \phi \right) - 2 \cos \theta + \cos \left( \theta - \phi \right)} = \tan \theta\]

\[\text{ If } \cos A + \cos B = \frac{1}{2}\text{ and }\sin A + \sin B = \frac{1}{4},\text{ prove that }\tan\left( \frac{A + B}{2} \right) = \frac{1}{2} .\]

 


\[\text{ If }\sin 2A = \lambda \sin 2B, \text{ prove that }\frac{\tan (A + B)}{\tan (A - B)} = \frac{\lambda + 1}{\lambda - 1}\]

 


\[\text{ If }\frac{\cos (A - B)}{\cos (A + B)} + \frac{\cos (C + D)}{\cos (C - D)} = 0, \text {Prove that }\tan A \tan B \tan C \tan D = - 1\]

 


If cos (A + B) sin (C − D) = cos (A − B) sin (C + D), prove that tan A tan B tan C + tan D = 0.

 

If \[m \sin\theta = n \sin\left( \theta + 2\alpha \right)\], prove that \[\tan\left( \theta + \alpha \right) \cot\alpha = \frac{m + n}{m - n}\]


Write the value of \[\sin\frac{\pi}{15}\sin\frac{4\pi}{15}\sin\frac{3\pi}{10}\]


If sin x + sin y = \[\sqrt{3}\] (cos y − cos x), then sin 3x + sin 3y =

 


Express the following as the sum or difference of sine or cosine:

cos 7θ sin 3θ


Express the following as the product of sine and cosine.

cos 2θ – cos θ


Evaluate-

cos 20° + cos 100° + cos 140°


Evaluate:

sin 50° – sin 70° + sin 10°


Find the value of tan22°30′. `["Hint:"  "Let" θ = 45°, "use" tan  theta/2 = (sin  theta/2)/(cos  theta/2) = (2sin  theta/2 cos  theta/2)/(2cos^2  theta/2) = sintheta/(1 + costheta)]`


If secx cos5x + 1 = 0, where 0 < x ≤ `pi/2`, then find the value of x.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×