Advertisements
Advertisements
Question
Prove that:
sin (B − C) cos (A − D) + sin (C − A) cos (B − D) + sin (A − B) cos (C − D) = 0
Solution
Consider LHS:
\[\sin (B - C) \cos (A - D) + \sin (C - A) \cos (B - D) + \sin (A - B) \cos (C - D)\]
Multiplying by 2:
\[ 2\sin (B - C) \cos (A - D) + 2\sin(C - A) \cos (B - D) + 2\sin (A - B) \cos (C - D)\]
\[ = \sin \left( B - C + A - D \right) + \sin \left( B - C - A + D \right) + \sin \left( C - A + B - D \right) + \sin \left( C - A - B + D \right) + \sin \left( A - B + C - D \right) + \sin \left( A - B - C + D \right)\]
\[ = \sin\left\{ - \left( C + D - A - B \right) \right\} + \sin\left\{ - \left( A + C - B - D \right) \right\} + \sin\left\{ - \left( A + D - B - C \right) \right\} + \sin\left( C - A - B + D \right) + \sin\left( A - B + C - D \right) + \sin\left( A - B - C + D \right)\]
\[ = - \sin\left( C + D - A - B \right) - \sin\left( A + C - B - D \right) - \sin\left( A + D - B - C \right) + \sin\left( C - A - B + D \right) + \sin\left( A - B + C - D \right) + \sin\left( A - B - C + D \right)\]
\[ = 0\]
= RHS
Hence, LHS = RHS.
APPEARS IN
RELATED QUESTIONS
Prove that:
Prove that:
cos 10° cos 30° cos 50° cos 70° = \[\frac{3}{16}\]
Prove that:
cos 40° cos 80° cos 160° = \[- \frac{1}{8}\]
Prove that:
tan 20° tan 40° tan 60° tan 80° = 3
Prove that tan 20° tan 30° tan 40° tan 80° = 1.
Express each of the following as the product of sines and cosines:
sin 12x + sin 4x
Express each of the following as the product of sines and cosines:
sin 5x − sin x
Express each of the following as the product of sines and cosines:
cos 12x - cos 4x
Prove that:
sin 105° + cos 105° = cos 45°
Prove that:
Prove that:
Prove that:
sin 47° + cos 77° = cos 17°
Prove that:
`sin A + sin 2A + sin 4A + sin 5A = 4 cos (A/2) cos((3A)/2)sin3A`
Prove that:
cos 20° cos 100° + cos 100° cos 140° − 140° cos 200° = −\[\frac{3}{4}\]
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
If cos (A + B) sin (C − D) = cos (A − B) sin (C + D), prove that tan A tan B tan C + tan D = 0.
If \[m \sin\theta = n \sin\left( \theta + 2\alpha \right)\], prove that \[\tan\left( \theta + \alpha \right) \cot\alpha = \frac{m + n}{m - n}\]
Write the value of \[\sin\frac{\pi}{15}\sin\frac{4\pi}{15}\sin\frac{3\pi}{10}\]
If sin x + sin y = \[\sqrt{3}\] (cos y − cos x), then sin 3x + sin 3y =
Express the following as the sum or difference of sine or cosine:
cos 7θ sin 3θ
Express the following as the product of sine and cosine.
cos 2θ – cos θ
Evaluate-
cos 20° + cos 100° + cos 140°
Evaluate:
sin 50° – sin 70° + sin 10°
Find the value of tan22°30′. `["Hint:" "Let" θ = 45°, "use" tan theta/2 = (sin theta/2)/(cos theta/2) = (2sin theta/2 cos theta/2)/(2cos^2 theta/2) = sintheta/(1 + costheta)]`
If secx cos5x + 1 = 0, where 0 < x ≤ `pi/2`, then find the value of x.