Advertisements
Advertisements
Question
Prove that:
sin 105° + cos 105° = cos 45°
Solution
Consider LHS:
\[\sin 105^\circ + \cos 105^\circ\]
\[ = \sin 105^\circ + \cos \left( 90^\circ + 15^\circ \right)\]
\[ = \sin 105^\circ - \sin 15^\circ\]
\[ = 2\sin \left( \frac{105^\circ - 15^\circ}{2} \right) \cos \left( \frac{105^\circ + 15^\circ}{2} \right) \left\{ \because \sin A + \sin B = 2\sin\left( \frac{A - B}{2} \right)\cos\left( \frac{A + B}{2} \right) \right\}\]
\[ = 2\sin 45^\circ\cos 60^\circ\]
\[ = 2\sin \left( 90^\circ - 45^\circ \right) \cos 60^\circ\]
\[ = 2 \times \frac{1}{2}\cos\left( 45^\circ \right)\]
\[ = \cos 45^\circ\]
Hence, LHS = RHS.
APPEARS IN
RELATED QUESTIONS
Show that :
Prove that:
sin 20° sin 40° sin 80° = \[\frac{\sqrt{3}}{8}\]
Prove that:
sin 10° sin 50° sin 60° sin 70° = \[\frac{\sqrt{3}}{16}\]
Show that:
sin A sin (B − C) + sin B sin (C − A) + sin C sin (A − B) = 0
Show that:
sin (B − C) cos (A − D) + sin (C − A) cos (B − D) + sin (A − B) cos (C − D) = 0
Prove that:
sin 38° + sin 22° = sin 82°
Prove that:
cos 100° + cos 20° = cos 40°
Prove that:
sin 23° + sin 37° = cos 7°
Prove that:
Prove that:
Prove that:
Prove that:
cos A + cos 3A + cos 5A + cos 7A = 4 cos A cos 2A cos 4A
Prove that:
`sin A + sin 2A + sin 4A + sin 5A = 4 cos (A/2) cos((3A)/2)sin3A`
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
sin (B − C) cos (A − D) + sin (C − A) cos (B − D) + sin (A − B) cos (C − D) = 0
If y sin ϕ = x sin (2θ + ϕ), prove that (x + y) cot (θ + ϕ) = (y − x) cot θ.
If \[m \sin\theta = n \sin\left( \theta + 2\alpha \right)\], prove that \[\tan\left( \theta + \alpha \right) \cot\alpha = \frac{m + n}{m - n}\]
cos 40° + cos 80° + cos 160° + cos 240° =
The value of sin 78° − sin 66° − sin 42° + sin 60° is ______.
If sin α + sin β = a and cos α − cos β = b, then tan \[\frac{\alpha - \beta}{2}\]=
If sin (B + C − A), sin (C + A − B), sin (A + B − C) are in A.P., then cot A, cot B and cot Care in
If sin x + sin y = \[\sqrt{3}\] (cos y − cos x), then sin 3x + sin 3y =
Express the following as the product of sine and cosine.
cos 2A + cos 4A
Express the following as the product of sine and cosine.
cos 2θ – cos θ
Prove that:
2 cos `pi/13` cos \[\frac{9\pi}{13} + \text{cos} \frac{3\pi}{13} + \text{cos} \frac{5\pi}{13}\] = 0
Prove that cos 20° cos 40° cos 60° cos 80° = `3/16`.
If tan θ = `1/sqrt5` and θ lies in the first quadrant then cos θ is: