Advertisements
Advertisements
Question
Prove that:
cos A + cos 3A + cos 5A + cos 7A = 4 cos A cos 2A cos 4A
Solution
Consider LHS:
\[ \cos A + \cos 3A + \cos 5A + \cos 7A\]
\[ = 2\cos \left( \frac{A + 3A}{2} \right) \cos \left( \frac{A - 3A}{2} \right) + 2\cos \left( \frac{5A + 7A}{2} \right) \cos \left( \frac{5A - 7A}{2} \right) \left\{ \because \cos A + \cos B = 2\cos\left( \frac{A + B}{2} \right)\cos\left( \frac{A - B}{2} \right) \right\}\]
\[ = 2\cos 2A \cos\left( - A \right) + 2\cos 6A \cos\left( - A \right)\]
\[= 2\cos 2A \cos A + 2\cos 6A \cos A\]
\[ = 2\cos A(\cos 2A + \cos 6A)\]
\[ = 2\cos A \times 2\cos \left( \frac{2A + 6A}{2} \right) \cos \left( \frac{2A - 6A}{2} \right)\]
\[ = 4\cos A \cos 4A \cos\left( - 2A \right)\]
\[ = 4\cos A \cos 2A \cos 4A\]
= RHS
Hence, LHS = RHS.
APPEARS IN
RELATED QUESTIONS
Prove that:
Prove that:
Show that :
Prove that:
sin 10° sin 50° sin 60° sin 70° = \[\frac{\sqrt{3}}{16}\]
Prove that:
sin 20° sin 40° sin 60° sin 80° = \[\frac{3}{16}\]
Express each of the following as the product of sines and cosines:
cos 12x + cos 8x
Express each of the following as the product of sines and cosines:
sin 2x + cos 4x
Prove that:
cos 55° + cos 65° + cos 175° = 0
Prove that:
cos 80° + cos 40° − cos 20° = 0
Prove that:
cos 20° + cos 100° + cos 140° = 0
Prove that:
Prove that:
Prove that:
`sin A + sin 2A + sin 4A + sin 5A = 4 cos (A/2) cos((3A)/2)sin3A`
Prove that:
sin 3A + sin 2A − sin A = 4 sin A cos \[\frac{A}{2}\] \[\frac{3A}{2}\]
Prove that:
cos 20° cos 100° + cos 100° cos 140° − 140° cos 200° = −\[\frac{3}{4}\]
Prove that:
Prove that:
Prove that:
Prove that:
cos (A + B + C) + cos (A − B + C) + cos (A + B − C) + cos (− A + B + C) = 4 cos A cos Bcos C
Prove that:
sin (B − C) cos (A − D) + sin (C − A) cos (B − D) + sin (A − B) cos (C − D) = 0
Write the value of sin \[\frac{\pi}{12}\] sin \[\frac{5\pi}{12}\].
If cos A = m cos B, then write the value of \[\cot\frac{A + B}{2} \cot\frac{A - B}{2}\].
Write the value of \[\sin\frac{\pi}{15}\sin\frac{4\pi}{15}\sin\frac{3\pi}{10}\]
The value of cos 52° + cos 68° + cos 172° is
cos 35° + cos 85° + cos 155° =
sin 47° + sin 61° − sin 11° − sin 25° is equal to
Express the following as the sum or difference of sine or cosine:
cos(60° + A) sin(120° + A)
Express the following as the sum or difference of sine or cosine:
cos 7θ sin 3θ
Prove that:
sin A sin(60° + A) sin(60° – A) = `1/4` sin 3A
Prove that:
sin (A – B) sin C + sin (B – C) sin A + sin(C – A) sin B = 0
Prove that:
`(cos 7"A" +cos 5"A")/(sin 7"A" −sin 5"A")` = cot A
Find the value of tan22°30′. `["Hint:" "Let" θ = 45°, "use" tan theta/2 = (sin theta/2)/(cos theta/2) = (2sin theta/2 cos theta/2)/(2cos^2 theta/2) = sintheta/(1 + costheta)]`