English

Sin 47° + Sin 61° − Sin 11° − Sin 25° is Equal to - Mathematics

Advertisements
Advertisements

Question

sin 47° + sin 61° − sin 11° − sin 25° is equal to

Options

  • sin 36°

  • cos 36°

  • sin 7°

  • cos 7°

MCQ
Sum

Solution

cos 7°
\[\sin47^\circ + \sin61^\circ - \sin11^\circ - \sin25^\circ\]
\[ = \sin47^\circ - \sin25^\circ + \sin61^\circ - \sin11^\circ\]
\[ = 2\sin\left( \frac{47^\circ - 25^\circ}{2} \right)\cos\left( \frac{47^\circ + 25^\circ}{2} \right) + 2\sin\left( \frac{61^\circ - 11^\circ}{2} \right)\cos\left( \frac{61^\circ + 11^\circ}{2} \right)\]
\[ = 2\sin11^\circ\cos36^\circ + 2\sin25^\circ\cos36^\circ\]
\[ = 2\cos36^\circ\left( \sin11^\circ + \sin25^\circ \right)\]
\[ = 2\cos36^\circ\left\{ 2\sin\left( \frac{11^\circ + 25^\circ}{2} \right)\cos\left( \frac{11^\circ - 25^\circ}{2} \right) \right\}\]
\[ = 4\cos36^\circ\sin18^\circ\cos7^\circ\]
\[ = 4 \times \left( \frac{\sqrt{5} - 1}{4} \right)\left( \frac{\sqrt{5} + 1}{4} \right)\cos7^\circ \left[ \cos36^\circ = \frac{\sqrt{5} + 1}{4}\text{ and }\sin18^\circ = \frac{\sqrt{5} - 1}{4} \right]\]
\[ = \frac{5 - 1}{4}\cos7^\circ\]
\[ = \cos7^\circ\]

shaalaa.com
Transformation Formulae
  Is there an error in this question or solution?
Chapter 8: Transformation formulae - Exercise 8.4 [Page 21]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 8 Transformation formulae
Exercise 8.4 | Q 9 | Page 21

RELATED QUESTIONS

\[\text{ Prove that }4 \cos x \cos\left( \frac{\pi}{3} + x \right) \cos \left( \frac{\pi}{3} - x \right) = \cos 3x .\]

 


Prove that:
cos 10° cos 30° cos 50° cos 70° = \[\frac{3}{16}\]

 


Prove that:
cos 40° cos 80° cos 160° = \[- \frac{1}{8}\]

 


Prove that:
cos 20° cos 40° cos 80° = \[\frac{1}{8}\]

 


Show that:
sin A sin (B − C) + sin B sin (C − A) + sin C sin (A − B) = 0


Show that:
sin (B − C) cos (A − D) + sin (C − A) cos (B − D) + sin (A − B) cos (C − D) = 0


Prove that 
\[\tan x \tan \left( \frac{\pi}{3} - x \right) \tan \left( \frac{\pi}{3} + x \right) = \tan 3x\]


Prove that:
sin 105° + cos 105° = cos 45°


Prove that:
sin 40° + sin 20° = cos 10°


Prove that:
 cos 55° + cos 65° + cos 175° = 0


Prove that:
 cos 80° + cos 40° − cos 20° = 0


Prove that:

sin 51° + cos 81° = cos 21°

Prove that:

\[\cos\left( \frac{3\pi}{4} + x \right) - \cos\left( \frac{3\pi}{4} - x \right) = - \sqrt{2} \sin x\]

 


Prove that:

\[\sin 65^\circ + \cos 65^\circ = \sqrt{2} \cos 20^\circ\]

Prove that:
cos 3A + cos 5A + cos 7A + cos 15A = 4 cos 4A cos 5A cos 6A


Prove that:

\[\frac{\sin A - \sin B}{\cos A + \cos B} = \tan\frac{A - B}{2}\]

Prove that:

\[\frac{\cos A + \cos B}{\cos B - \cos A} = \cot \left( \frac{A + B}{2} \right) \cot \left( \frac{A - B}{2} \right)\]

Prove that:

\[\frac{\sin A + \sin 3A + \sin 5A}{\cos A + \cos 3A + \cos 5A} = \tan 3A\]

 


Prove that:

\[\frac{\sin 3A \cos 4A - \sin A \cos 2A}{\sin 4A \sin A + \cos 6A \cos A} = \tan 2A\]

Prove that:

\[\frac{\sin A + 2 \sin 3A + \sin 5A}{\sin 3A + 2 \sin 5A + \sin 7A} = \frac{\sin 3A}{\sin 5A}\]

Prove that:

\[\frac{\sin \left( \theta + \phi \right) - 2 \sin \theta + \sin \left( \theta - \phi \right)}{\cos \left( \theta + \phi \right) - 2 \cos \theta + \cos \left( \theta - \phi \right)} = \tan \theta\]

Prove that:
cos (A + B + C) + cos (A − B + C) + cos (A + B − C) + cos (− A + B + C) = 4 cos A cos Bcos C


\[\text{ If }\frac{\cos (A - B)}{\cos (A + B)} + \frac{\cos (C + D)}{\cos (C - D)} = 0, \text {Prove that }\tan A \tan B \tan C \tan D = - 1\]

 


If cos (α + β) sin (γ + δ) = cos (α − β) sin (γ − δ), prove that cot α cot β cot γ = cot δ

 

Write the value of the expression \[\frac{1 - 4 \sin 10^\circ \sin 70^\circ}{2 \sin 10^\circ}\]


cos 40° + cos 80° + cos 160° + cos 240° =


The value of sin 78° − sin 66° − sin 42° + sin 60° is ______.


If cos A = m cos B, then \[\cot\frac{A + B}{2} \cot\frac{B - A}{2}\]=

 

Express the following as the sum or difference of sine or cosine:

`sin  "A"/8  sin  (3"A")/8`


Express the following as the sum or difference of sine or cosine:

cos(60° + A) sin(120° + A)


Express the following as the product of sine and cosine.

cos 2θ – cos θ


Prove that:

(cos α – cos β)2 + (sin α – sin β)2 = 4 sin2 `((alpha - beta)/2)`


Prove that:

`(cos 2"A" - cos 3"A")/(sin "2A" + sin "3A") = tan  "A"/2`


Evaluate-

cos 20° + cos 100° + cos 140°


Find the value of tan22°30′. `["Hint:"  "Let" θ = 45°, "use" tan  theta/2 = (sin  theta/2)/(cos  theta/2) = (2sin  theta/2 cos  theta/2)/(2cos^2  theta/2) = sintheta/(1 + costheta)]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×