Advertisements
Advertisements
Question
sin 47° + sin 61° − sin 11° − sin 25° is equal to
Options
sin 36°
cos 36°
sin 7°
cos 7°
Solution
cos 7°
\[\sin47^\circ + \sin61^\circ - \sin11^\circ - \sin25^\circ\]
\[ = \sin47^\circ - \sin25^\circ + \sin61^\circ - \sin11^\circ\]
\[ = 2\sin\left( \frac{47^\circ - 25^\circ}{2} \right)\cos\left( \frac{47^\circ + 25^\circ}{2} \right) + 2\sin\left( \frac{61^\circ - 11^\circ}{2} \right)\cos\left( \frac{61^\circ + 11^\circ}{2} \right)\]
\[ = 2\sin11^\circ\cos36^\circ + 2\sin25^\circ\cos36^\circ\]
\[ = 2\cos36^\circ\left( \sin11^\circ + \sin25^\circ \right)\]
\[ = 2\cos36^\circ\left\{ 2\sin\left( \frac{11^\circ + 25^\circ}{2} \right)\cos\left( \frac{11^\circ - 25^\circ}{2} \right) \right\}\]
\[ = 4\cos36^\circ\sin18^\circ\cos7^\circ\]
\[ = 4 \times \left( \frac{\sqrt{5} - 1}{4} \right)\left( \frac{\sqrt{5} + 1}{4} \right)\cos7^\circ \left[ \cos36^\circ = \frac{\sqrt{5} + 1}{4}\text{ and }\sin18^\circ = \frac{\sqrt{5} - 1}{4} \right]\]
\[ = \frac{5 - 1}{4}\cos7^\circ\]
\[ = \cos7^\circ\]
APPEARS IN
RELATED QUESTIONS
Prove that:
cos 10° cos 30° cos 50° cos 70° = \[\frac{3}{16}\]
Prove that:
cos 40° cos 80° cos 160° = \[- \frac{1}{8}\]
Prove that:
cos 20° cos 40° cos 80° = \[\frac{1}{8}\]
Show that:
sin A sin (B − C) + sin B sin (C − A) + sin C sin (A − B) = 0
Show that:
sin (B − C) cos (A − D) + sin (C − A) cos (B − D) + sin (A − B) cos (C − D) = 0
Prove that
\[\tan x \tan \left( \frac{\pi}{3} - x \right) \tan \left( \frac{\pi}{3} + x \right) = \tan 3x\]
Prove that:
sin 105° + cos 105° = cos 45°
Prove that:
sin 40° + sin 20° = cos 10°
Prove that:
cos 55° + cos 65° + cos 175° = 0
Prove that:
cos 80° + cos 40° − cos 20° = 0
Prove that:
Prove that:
Prove that:
Prove that:
cos 3A + cos 5A + cos 7A + cos 15A = 4 cos 4A cos 5A cos 6A
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
cos (A + B + C) + cos (A − B + C) + cos (A + B − C) + cos (− A + B + C) = 4 cos A cos Bcos C
If cos (α + β) sin (γ + δ) = cos (α − β) sin (γ − δ), prove that cot α cot β cot γ = cot δ
Write the value of the expression \[\frac{1 - 4 \sin 10^\circ \sin 70^\circ}{2 \sin 10^\circ}\]
cos 40° + cos 80° + cos 160° + cos 240° =
The value of sin 78° − sin 66° − sin 42° + sin 60° is ______.
If cos A = m cos B, then \[\cot\frac{A + B}{2} \cot\frac{B - A}{2}\]=
Express the following as the sum or difference of sine or cosine:
`sin "A"/8 sin (3"A")/8`
Express the following as the sum or difference of sine or cosine:
cos(60° + A) sin(120° + A)
Express the following as the product of sine and cosine.
cos 2θ – cos θ
Prove that:
(cos α – cos β)2 + (sin α – sin β)2 = 4 sin2 `((alpha - beta)/2)`
Prove that:
`(cos 2"A" - cos 3"A")/(sin "2A" + sin "3A") = tan "A"/2`
Evaluate-
cos 20° + cos 100° + cos 140°
Find the value of tan22°30′. `["Hint:" "Let" θ = 45°, "use" tan theta/2 = (sin theta/2)/(cos theta/2) = (2sin theta/2 cos theta/2)/(2cos^2 theta/2) = sintheta/(1 + costheta)]`