English

Show That: Sin A Sin (B − C) + Sin B Sin (C − A) + Sin C Sin (A − B) = 0 - Mathematics

Advertisements
Advertisements

Question

Show that:
sin A sin (B − C) + sin B sin (C − A) + sin C sin (A − B) = 0

Sum

Solution

Consider LHS: 
\[\sin A \sin \left( B - C \right) + \sin B \sin \left( C - A \right) + \sin C \sin \left( A - B \right)\]
\[ = \frac{1}{2}\left[ 2\sin A \sin \left( B - C \right) \right] + \frac{1}{2}\left[ 2\sin B \sin \left( C - A \right) \right] + \frac{1}{2}\left[ 2\sin C \sin \left( A - B \right) \right]\]
\[ = \frac{1}{2}\left[ \cos \left\{ A - \left( B - C \right) \right\} - \cos \left\{ A + \left( B - C \right) \right\} \right] + \frac{1}{2}\left[ \cos \left\{ B - \left( C - A \right) \right\} - \cos \left\{ B + \left( C - A \right) \right\} \right] + \frac{1}{2}\left[ \cos \left\{ C - \left( A - B \right) \right\} - \cos \left\{ C + \left( A - B \right) \right\} \right]\]
\[ = \frac{1}{2}\left[ \cos \left( A - B + C \right) - \cos \left( A + B - C \right) \right] + \frac{1}{2}\left[ \cos \left( B - C + A \right) - \cos\left( B + C - A \right) \right] + \frac{1}{2}\left[ \cos\left( C - A + B \right) - \cos\left( C + A - B \right) \right]\]
\[ = \frac{1}{2}\cos\left( A - B + C \right) - \frac{1}{2}\cos \left( A + B - C \right) + \frac{1}{2}\cos \left( B - C + A \right) - \frac{1}{2}\cos \left( B + C - A \right) + \frac{1}{2}\cos \left( C - A + B \right) - \frac{1}{2}\cos\left( C + A - B \right)\]
\[ = \frac{1}{2}\cos\left( A - B + C \right) - \frac{1}{2}\cos\left( A + B - C \right) + \frac{1}{2}\cos\left( A + B - C \right) - \frac{1}{2}\cos\left( B + C - A \right) + \frac{1}{2}\cos\left( B + C - A \right) - \frac{1}{2}\cos\left( A - B + C \right)\]
\[ = 0\]
 = RHS

shaalaa.com
Transformation Formulae
  Is there an error in this question or solution?
Chapter 8: Transformation formulae - Exercise 8.1 [Page 7]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 8 Transformation formulae
Exercise 8.1 | Q 6.1 | Page 7

RELATED QUESTIONS

Prove that: 

\[2\sin\frac{5\pi}{12}\cos\frac{\pi}{12} = \frac{\sqrt{3} + 2}{2}\]

Prove that:
cos 40° cos 80° cos 160° = \[- \frac{1}{8}\]

 


Prove that:
 sin 20° sin 40° sin 80° = \[\frac{\sqrt{3}}{8}\]

 


Prove that:
cos 20° cos 40° cos 80° = \[\frac{1}{8}\]

 


Prove that:
sin 10° sin 50° sin 60° sin 70° = \[\frac{\sqrt{3}}{16}\]

 


Prove that:
 sin 20° sin 40° sin 60° sin 80° = \[\frac{3}{16}\]

 


Prove that:
 cos 100° + cos 20° = cos 40°


Prove that:
 sin 23° + sin 37° = cos 7°


Prove that:
sin 105° + cos 105° = cos 45°


Prove that:
sin 40° + sin 20° = cos 10°


Prove that:

\[\cos\frac{\pi}{12} - \sin\frac{\pi}{12} = \frac{1}{\sqrt{2}}\]

 


Prove that:

sin 80° − cos 70° = cos 50°

Prove that:

sin 51° + cos 81° = cos 21°

Prove that:

\[\cos\left( \frac{\pi}{4} + x \right) + \cos\left( \frac{\pi}{4} - x \right) = \sqrt{2} \cos x\]

 


Prove that:
 `sin A + sin 2A + sin 4A + sin 5A = 4 cos (A/2) cos((3A)/2)sin3A`


Prove that:

cos 20° cos 100° + cos 100° cos 140° − 140° cos 200° = −\[\frac{3}{4}\]

 


Prove that:

\[\frac{\sin 9A - \sin 7A}{\cos 7A - \cos 9A} = \cot 8A\]

Prove that:

\[\frac{\sin A - \sin B}{\cos A + \cos B} = \tan\frac{A - B}{2}\]

Prove that:

\[\frac{\sin A + \sin B}{\sin A - \sin B} = \tan \left( \frac{A + B}{2} \right) \cot \left( \frac{A - B}{2} \right)\]

Prove that:

\[\frac{\cos A + \cos B}{\cos B - \cos A} = \cot \left( \frac{A + B}{2} \right) \cot \left( \frac{A - B}{2} \right)\]

If cosec A + sec A = cosec B + sec B, prove that tan A tan B = \[\cot\frac{A + B}{2}\].


\[\text{ If }\sin 2A = \lambda \sin 2B, \text{ prove that }\frac{\tan (A + B)}{\tan (A - B)} = \frac{\lambda + 1}{\lambda - 1}\]

 


Prove that:

\[\frac{\cos (A + B + C) + \cos ( - A + B + C) + \cos (A - B + C) + \cos (A + B - C)}{\sin (A + B + C) + \sin ( - A + B + C) + \sin (A - B + C) - \sin (A + B - C)} = \cot C\]

If y sin ϕ = x sin (2θ + ϕ), prove that (x + y) cot (θ + ϕ) = (y − x) cot θ.

 

If \[m \sin\theta = n \sin\left( \theta + 2\alpha \right)\], prove that \[\tan\left( \theta + \alpha \right) \cot\alpha = \frac{m + n}{m - n}\]


If (cos α + cos β)2 + (sin α + sin β)2 = \[\lambda \cos^2 \left( \frac{\alpha - \beta}{2} \right)\], write the value of λ. 


If cos (A + B) sin (C − D) = cos (A − B) sin (C + D), then write the value of tan A tan B tan C.


The value of cos 52° + cos 68° + cos 172° is


The value of sin 78° − sin 66° − sin 42° + sin 60° is ______.


If sin α + sin β = a and cos α − cos β = b, then tan \[\frac{\alpha - \beta}{2}\]=


Express the following as the sum or difference of sine or cosine:

`cos  (7"A")/3 sin  (5"A")/3`


Express the following as the product of sine and cosine.

sin A + sin 2A


Prove that cos 20° cos 40° cos 60° cos 80° = `3/16`.


If cos A + cos B = `1/2` and sin A + sin B = `1/4`, prove that tan `(("A + B")/2) = 1/2`


If secx cos5x + 1 = 0, where 0 < x ≤ `pi/2`, then find the value of x.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×