Advertisements
Advertisements
Question
Prove that:
sin 20° sin 40° sin 80° = \[\frac{\sqrt{3}}{8}\]
Solution
\[LHS = \sin 20^\circ\sin 40^\circ \sin 80^\circ\]
\[ = \frac{1}{2}\left[ 2\sin 20^\circ \sin 40^\circ \right]\sin 80^\circ\]
\[ = \frac{1}{2}\left[ \cos \left( 20^\circ - 40^\circ \right) - \cos \left( 20^\circ + 40^\circ \right) \right] \sin 80^\circ\]
\[ = \frac{1}{2}\left[ \cos 20^\circ - \frac{1}{2} \right] \sin 80^\circ\]
\[ = \frac{1}{2}\sin 80^\circ\left[ \cos 20^\circ - \frac{1}{2} \right]\]
\[ = \frac{1}{2}\sin 80^\circ \cos 20^\circ - \frac{1}{4}\sin 80^\circ\]
\[ = \frac{1}{2}\sin \left( 90^\circ - 10^\circ \right) \cos 20^\circ - \frac{1}{4}\sin 80^\circ\]
\[ = \frac{1}{2}\cos 10^\circ \cos 20^\circ - \frac{1}{4}\sin 80^\circ\]
\[= \frac{1}{4}\left[ 2\cos 10^\circ cos 20^\circ \right] - \frac{1}{4}\sin 80^\circ\]
\[ = \frac{1}{4}\left[ \cos \left( 10^\circ + 20^\circ \right) + \cos \left( 10^\circ - 20^\circ \right) \right] - \frac{1}{4}\sin 80^\circ\]
\[ = \frac{1}{4}\left[ \cos 30^\circ + \cos \left( - 10^\circ \right) \right] - \frac{1}{4}\sin 80^\circ\]
\[ = \frac{1}{4}\left[ \cos 30^\circ + \cos \left( 90^\circ - 80^\circ \right) \right] - \frac{1}{4}\sin 80^\circ\]
\[ = \frac{\sqrt{3}}{8} + \frac{1}{4}\sin 80^\circ - \frac{1}{4}\sin 80^\circ \left[ \because \cos \left( 90^\circ - 80^\circ \right) = \sin 80^\circ \right]\]
\[ = \frac{\sqrt{3}}{8} = RHS\]
APPEARS IN
RELATED QUESTIONS
Prove that:
Prove that:
Show that :
Prove that:
cos 40° cos 80° cos 160° = \[- \frac{1}{8}\]
Prove that:
sin 20° sin 40° sin 60° sin 80° = \[\frac{3}{16}\]
Prove that
\[\tan x \tan \left( \frac{\pi}{3} - x \right) \tan \left( \frac{\pi}{3} + x \right) = \tan 3x\]
Express each of the following as the product of sines and cosines:
sin 12x + sin 4x
Express each of the following as the product of sines and cosines:
cos 12x + cos 8x
Prove that:
sin 40° + sin 20° = cos 10°
Prove that:
sin 50° − sin 70° + sin 10° = 0
Prove that:
cos 80° + cos 40° − cos 20° = 0
Prove that:
Prove that:
sin 3A + sin 2A − sin A = 4 sin A cos \[\frac{A}{2}\] \[\frac{3A}{2}\]
Prove that:
Prove that:
Prove that:
Prove that:
If cosec A + sec A = cosec B + sec B, prove that tan A tan B = \[\cot\frac{A + B}{2}\].
Prove that:
If sin A + sin B = α and cos A + cos B = β, then write the value of tan \[\left( \frac{A + B}{2} \right)\].
Write the value of the expression \[\frac{1 - 4 \sin 10^\circ \sin 70^\circ}{2 \sin 10^\circ}\]
If A + B = \[\frac{\pi}{3}\] and cos A + cos B = 1, then find the value of cos \[\frac{A - B}{2}\].
cos 40° + cos 80° + cos 160° + cos 240° =
The value of sin 78° − sin 66° − sin 42° + sin 60° is ______.
If sin α + sin β = a and cos α − cos β = b, then tan \[\frac{\alpha - \beta}{2}\]=
sin 47° + sin 61° − sin 11° − sin 25° is equal to
Express the following as the product of sine and cosine.
sin A + sin 2A
Express the following as the product of sine and cosine.
cos 2θ – cos θ
Prove that:
tan 20° tan 40° tan 80° = `sqrt3`.
Prove that:
sin (A – B) sin C + sin (B – C) sin A + sin(C – A) sin B = 0
Prove that:
`(cos 2"A" - cos 3"A")/(sin "2A" + sin "3A") = tan "A"/2`
Prove that cos 20° cos 40° cos 60° cos 80° = `3/16`.
Evaluate-
cos 20° + cos 100° + cos 140°
Evaluate:
sin 50° – sin 70° + sin 10°