Advertisements
Advertisements
प्रश्न
Prove that:
sin 20° sin 40° sin 80° = \[\frac{\sqrt{3}}{8}\]
उत्तर
\[LHS = \sin 20^\circ\sin 40^\circ \sin 80^\circ\]
\[ = \frac{1}{2}\left[ 2\sin 20^\circ \sin 40^\circ \right]\sin 80^\circ\]
\[ = \frac{1}{2}\left[ \cos \left( 20^\circ - 40^\circ \right) - \cos \left( 20^\circ + 40^\circ \right) \right] \sin 80^\circ\]
\[ = \frac{1}{2}\left[ \cos 20^\circ - \frac{1}{2} \right] \sin 80^\circ\]
\[ = \frac{1}{2}\sin 80^\circ\left[ \cos 20^\circ - \frac{1}{2} \right]\]
\[ = \frac{1}{2}\sin 80^\circ \cos 20^\circ - \frac{1}{4}\sin 80^\circ\]
\[ = \frac{1}{2}\sin \left( 90^\circ - 10^\circ \right) \cos 20^\circ - \frac{1}{4}\sin 80^\circ\]
\[ = \frac{1}{2}\cos 10^\circ \cos 20^\circ - \frac{1}{4}\sin 80^\circ\]
\[= \frac{1}{4}\left[ 2\cos 10^\circ cos 20^\circ \right] - \frac{1}{4}\sin 80^\circ\]
\[ = \frac{1}{4}\left[ \cos \left( 10^\circ + 20^\circ \right) + \cos \left( 10^\circ - 20^\circ \right) \right] - \frac{1}{4}\sin 80^\circ\]
\[ = \frac{1}{4}\left[ \cos 30^\circ + \cos \left( - 10^\circ \right) \right] - \frac{1}{4}\sin 80^\circ\]
\[ = \frac{1}{4}\left[ \cos 30^\circ + \cos \left( 90^\circ - 80^\circ \right) \right] - \frac{1}{4}\sin 80^\circ\]
\[ = \frac{\sqrt{3}}{8} + \frac{1}{4}\sin 80^\circ - \frac{1}{4}\sin 80^\circ \left[ \because \cos \left( 90^\circ - 80^\circ \right) = \sin 80^\circ \right]\]
\[ = \frac{\sqrt{3}}{8} = RHS\]
APPEARS IN
संबंधित प्रश्न
Prove that:
cos 20° cos 40° cos 80° = \[\frac{1}{8}\]
Prove that:
sin 20° sin 40° sin 60° sin 80° = \[\frac{3}{16}\]
Show that:
sin (B − C) cos (A − D) + sin (C − A) cos (B − D) + sin (A − B) cos (C − D) = 0
Prove that
\[\tan x \tan \left( \frac{\pi}{3} - x \right) \tan \left( \frac{\pi}{3} + x \right) = \tan 3x\]
Express each of the following as the product of sines and cosines:
cos 12x + cos 8x
Prove that:
sin 38° + sin 22° = sin 82°
Prove that:
cos 100° + cos 20° = cos 40°
Prove that:
sin 50° + sin 10° = cos 20°
Prove that:
sin 40° + sin 20° = cos 10°
Prove that:
\[\sin\frac{5\pi}{18} - \cos\frac{4\pi}{9} = \sqrt{3} \sin\frac{\pi}{9}\]
Prove that:
Prove that:
sin 47° + cos 77° = cos 17°
Prove that:
sin 3A + sin 2A − sin A = 4 sin A cos \[\frac{A}{2}\] \[\frac{3A}{2}\]
Prove that:
cos 20° cos 100° + cos 100° cos 140° − 140° cos 200° = −\[\frac{3}{4}\]
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
sin (B − C) cos (A − D) + sin (C − A) cos (B − D) + sin (A − B) cos (C − D) = 0
If cos (A + B) sin (C − D) = cos (A − B) sin (C + D), then write the value of tan A tan B tan C.
If sin 2 θ + sin 2 ϕ = \[\frac{1}{2}\] and cos 2 θ + cos 2 ϕ = \[\frac{3}{2}\], then cos2 (θ − ϕ) =
The value of sin 78° − sin 66° − sin 42° + sin 60° is ______.
If sin (B + C − A), sin (C + A − B), sin (A + B − C) are in A.P., then cot A, cot B and cot Care in
If sin x + sin y = \[\sqrt{3}\] (cos y − cos x), then sin 3x + sin 3y =
If \[\tan\alpha = \frac{x}{x + 1}\] and
Express the following as the sum or difference of sine or cosine:
`sin "A"/8 sin (3"A")/8`
Express the following as the sum or difference of sine or cosine:
cos 7θ sin 3θ
Express the following as the product of sine and cosine.
sin A + sin 2A
Express the following as the product of sine and cosine.
sin 6θ – sin 2θ
Prove that:
sin A sin(60° + A) sin(60° – A) = `1/4` sin 3A
If cosec A + sec A = cosec B + sec B prove that cot`(("A + B"))/2` = tan A tan B.
If tan θ = `1/sqrt5` and θ lies in the first quadrant then cos θ is: