Advertisements
Advertisements
प्रश्न
If cosec A + sec A = cosec B + sec B prove that cot`(("A + B"))/2` = tan A tan B.
उत्तर
Given that cosec A + sec A = cosec B + sec B
`1/(sin "A") + 1/(cos "A") = 1/(sin "B") + 1/(cos "A")`
`1/(sin "A") - 1/(sin "B") = 1/(cos "B") - 1/1/(cos "A")`
Arrange T-ratios of the sine and cosine in the separate side
∴ `(sin "B" - sin "A")/(sin "A" sin "B") = (cos "A" - cos "B")/(cos "A" cos "B")`
∴ `(sin "B" - sin "A")/(cos "A" - cos "B")` = tan A tan B
`[∵ sin "C" - sin "D" = 2 cos (("C + D")/2) sin (("C - D")/2)]`
∴ `(2 cos (("B + A")/2) sin (("B - A")/2))/(- 2 sin (("A + B")/2) sin(("A - B")/2))` = tan A tan B
∴ `(2 cos (("A + B")/2) sin (("- A + B")/2))/(- 2 sin (("A + B")/2) sin(("A - B")/2))` = tan A tan B
∴ `(-2 cos (("A + B")/2) sin (("A - B")/2))/(- 2 sin (("A + B")/2) sin(("A - B")/2))` = tan A tan B
∴ `cot (("A + B")/2)` = tan A tan B
APPEARS IN
संबंधित प्रश्न
Prove that:
cos 40° cos 80° cos 160° = \[- \frac{1}{8}\]
Prove that:
cos 55° + cos 65° + cos 175° = 0
Prove that:
Prove that:
sin 47° + cos 77° = cos 17°
Prove that:
If cos (α + β) sin (γ + δ) = cos (α − β) sin (γ − δ), prove that cot α cot β cot γ = cot δ
Express the following as the sum or difference of sine or cosine:
cos 7θ sin 3θ
Prove that:
(cos α – cos β)2 + (sin α – sin β)2 = 4 sin2 `((alpha - beta)/2)`
Find the value of tan22°30′. `["Hint:" "Let" θ = 45°, "use" tan theta/2 = (sin theta/2)/(cos theta/2) = (2sin theta/2 cos theta/2)/(2cos^2 theta/2) = sintheta/(1 + costheta)]`